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Abstract 

This study addresses antibiotic resistance, recognized by the United Nations Environment 

Program (UNEP) as a threat to global health and sustainability. Concentrated Animal Feeding 

Operations (CAFOs), or “factory farms,” administer low concentrations of antibiotics to animals 

through feed, a practice aimed at modestly enhancing growth rates and preventing infections 

(Hembach et al., 2022, p. 2). Such subtherapeutic antibiotic use allows pathogens to develop 

antibiotic resistance genes (ARGs), which can contaminate surrounding waters through runoff or 

manure spray (Martin et al., 2015). Nine surface water samples from sites near dairy and swine 

CAFOs in Michigan (MI) and two sites nearby were collected in the fall of 2023. Seven surface 

water samples from sites near dairy and swine CAFOs in MI and two sites nearby were collected 

in the spring of 2024. For both sets of samples, same-day culture-based analyses for fecal 

indicator bacteria using IDEXX Colilert 18, in the presence and absence of antibiotics. revealed 

elevated levels of Escherichia coli, total coliforms, and antibiotic-resistant coliforms. IDEXX 

also revealed a higher percentage of antibiotic-resistant E.coli and total coliform in spring 

samples relative to fall. Samples were further analyzed by qPCR for target ARGs and microbial 

source tracking genes (MSTs). In conjunction with qPCR analysis, this study utilized 

metagenomic analysis of shotgun-sequenced samples. A comparison between the three 

approaches will help standardize the antibiotic-resistant bacteria (ARB) surveillance process for 

communities near CAFOs. Results from this study will provide a more detailed understanding of 

environmental injustice manifested in the biased distribution of antibiotic resistance genes.   
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Introduction 

Antibiotic use in animal feed is one of the most contentious agricultural practices in the 

United States. The Environmental Protection Agency of the United States (US EPA) outlines in 

Title 40, section 122.23 of the Code of Federal Regulations that an animal feeding operation is a 

livestock production facility where animals are confined for at least 45 days within a year. The 

classification of an operation as a concentrated animal feeding operation, or CAFO, depends on 

the number of animals present. For example, a dairy farm with more than 200 cattle would be 

considered a CAFO. In addition, the Clean Water Act (CWA), a key regulatory statute 

promulgated by the U.S. EPA, considers CAFOs as a point source of pollution.  

Antibiotics administered to CAFO animals through feed serve two major purposes: to 

eradicate pathogens from livestock populations and to promote animal growth by increasing 

nourishment efficiency (Zhang et al., 2022). This process involves low-level dosing, which 

creates favorable conditions for bacteria to develop antibiotic resistance and proliferate, thus 

enabling the spread of antibiotic-resistant genes (ARGs) within the microbial community. 

Roughly 80% of antibiotics sales in the United States are allocated for application in animal 

agriculture, and approximately 70% of these antibiotics sold are categorized as "medically 

important," a classification reserved for drugs crucial to human patients (Martin et al., 2015). 

ARGs can potentially transfer from CAFO animals to human populations through various 

pathways, such as ingestion of ARG-contaminated produce or environmental ARG pollution.  

This poses a serious health concern as the spread of resistance genes in pathogens may render all 

drugs ineffective against infections (Hembach et al., 2022, pp. 1-3). 

The fecal waste that hosts ARGs is rarely contained within CAFOs, as revealed by prior 

studies that identified high concentrations of microbial pollution in bodies of water near CAFOs. 
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Streams and rivers serve as hotspots for antimicrobial dissemination, providing dynamic 

environments for ARG transfers (Damashek et al., 2022). Livestock fecal matter entering surface 

waters can increase environmental ARGs (Paruch et al., 2022). Effluent runoff from feeding 

facilities, manure application on crops, and accidental contamination can all contribute to this 

issue (Heaney, 2015; Hubbard et al., 2020; Givens et al., 2016; Rieke et al., 2018; Graham et al., 

2019). Heaney (2015) conducted a study on waters downstream of CAFO sites in North Carolina 

and found higher concentrations of swine-specific bacteria, especially during spring and summer 

or following rainfall (Heaney, 2015). Similar patterns were observed with poultry litter and 

groundwater contamination near concentrated poultry feeding operations (Hubbard et al., 2020).  

Our practicum project investigated an issue that involves public health, agriculture, and 

the environment by recording the presence of ARGs near CAFOs. While a breadth of reports 

exist on occupational health hazards associated with CAFOs, community-based participatory 

research is limited.  

Over the past year, we analyzed water samples for the presence and concentration of 

microbial markers of ARGs in residential areas adjacent to CAFO facilities in MI, using the 

genes tetW, sul1, intl1, ermF, and blaSHV as antibiotic resistance indicators, and pig2Bac, 

CowM2, CowM3, blaCTX, and 16S as microbial source tracking (MST) genes. Our objective was 

to determine the concentrations of ARGs and MST genes in our samples, as well as to compare 

the resistome assessed through culture-based, qPCR, and metagenomic methods. Significant 

concentrations of ARGs and MSTs detected from a given area would indicate CAFOs as the 

most probable cause of contamination. Conversely, a high concentration of ARGs coupled with 

little to zero presence of MST genes detected would indicate another potential contamination 

source. Our community partners, Lynn Henning, the Director of the Water Rangers Program at 
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Socially Responsible Agriculture Project (SRAP), and Cole Dickerson, a scientist at SRAP, 

identified sampling sites in Michigan. Nine residential sites were near swine and dairy CAFOs, 

one site was not impacted by agriculture, and one was impacted by a wastewater treatment plant.  

 We created graphs to compare results from the two methods of ARG analysis, which 

illuminated the spatial and seasonal patterns of ARGs in surface waters. Our project highlighted 

that antibiotic resistance genes proliferate in CAFOs and infiltrate nearby environments, namely 

surface waters. Grave health repercussions experienced by nearby communities serve as one of a 

myriad of barriers to achieving environmental justice. We hope that our results will provide a 

nuanced understanding of the severity of risk faced by residents near CAFOs, offering valuable 

insights to guide public health policies and practices. 
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Methods 

Site Description, Sample Collection, and Preservation 

Our water sample collection was conducted in MI, specifically targeting areas near 

Concentrated Animal Feeding Operations (CAFOs). MI is home to numerous CAFOs, 

predominantly situated in rural areas where large-scale animal agriculture is prevalent. These 

CAFOs primarily consist of operations housing swine, cattle, and poultry, with some facilities 

accommodating thousands of animals at a single site. Informed by these characteristics and our 

connection with the Socially Responsible Agriculture Project, MI was chosen as the location for 

sample collection. All 11 sites were selected by Lynn Henning. Sites 1-9 are categorized as 

“CAFO-Impacted” sites due to their proximity to swine and dairy CAFOs or connection to swine 

and dairy CAFO discharge. Site 10 served as the “Non-agricultural Control.” Site 11 is impacted 

by wastewater and is used as a comparison site. 

Table 1A. Overview of sites 

Site # Site type Location of site Local CAFO(s) (upstream of site) 
1A Dairy Hughes Hwy. Henning Drain Hartland Farms, Inc. 

2A Dairy Cadmus Rd S. Branch River Raisin Bakerlads Farms, Hartland Farms, 
Inc. 

3A Dairy Haley Road Rice Lake Drain Hoffland Dairy LLC 

4A Dairy Tomer Road Lake Hudson Bear 
Creek 

Hartland Farms, Inc., Hoffland Dairy 
LLC, Rathmourne Dairy Medina 

5A Swine and Dairy W.Ridgeville Road Silver Creek SunRyz Dairy LLC, State Line Farms 
6A Swine and Dairy W. Mulberry Road Silver Creek SunRyz Dairy LLC, State Line Farms 
7A Dairy Dillon Hwy. S. Durfee Branch Rathmourne Dairy Medina 

8A Swine and Dairy Lime Lake Road Lime Lake Inlet Rathmourne Dairy Hudson, White 
Farms 

9A Swine and Dairy Coman Road Lime Lake Inlet Rathmourne Dairy Hudson, White 
Farms 

10A Non-agricultural control Addison Township N/A 
11A Wastewater treatment plant Clinton Township N/A 

 

Table 1B. Overview of CAFOs near sites 
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CAFO Animal type Upstream of site(s) # Reported year of 
establishment  

Reported annual 
revenue (USD)1 

Hartland Farms, Inc. Dairy 1A, 2A, 4A 19681 1,640,790 
Bakerlads Farms Dairy 2A 19761 436,660 
Hoffland Dairy LLC Dairy 3A, 4A 20051 586,566 
Rathmourne Dairy 
Medina Dairy 4A, 8A-10A 20152 <500,000 

SunRyz Dairy LLC Dairy 5A, 6A 20162 Unknown 
State Line Farms Swine 5A, 6A 20001 80,000 
White Farms Swine 8A, 9A 19791 128,779 

1. Manta. (2024). Results driven online marketing agency.  

2. OpenCorporates. (2024). The open database of the corporate world.  

Surface water samples were collected from the 11 sites in MI during the fall of 2023 as 

well as the spring of 2024. Water samples were collected using a water sampler designed by a 

UCLA undergraduate student Tim Chen. The water sampler is composed of a PVC pipe frame 

filled with weighted rocks. A metal ring is attached perpendicular to the frame and is secured 

with zip ties. The ring can be tightened with a screwdriver to effectively fasten a sterile 2L 

sampling bottle.  The rope secured at the top of the frame using a pipe hitch knot allowed sample 

collection from various heights. Using the water sampler, sample collection followed a procedure 

of flushing the 2L sampling bottle with site water three times before finally collecting a full 

bottle. Each water sample was kept on ice to maintain viability after each collection. Samples 

were delivered on ice immediately following collection and personally delivered to the UCLA 

Jay Laboratory within 24 hours for same-day IDEXX culture incubation and filtering in 

preparation for DNA extraction.   

DNA Filtration and Extraction 

Water samples collected from the designated locations were filtered using sterile 0.4µm 

pore size filter papers. The filter papers were then placed into sterile microcentrifuge tubes, and 
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1.5 mL of 50% ethanol solution was added to each tube to preserve the treesamples. The tubes 

were stored at -20°C for future use. 

Microbial DNA was extracted from the samples using the MP FastDNA SPIN Kit. 

Extraction was performed according to the manufacturer's protocol. Extracted DNA from each 

site was sent to an external lab for shotgun sequencing to prepare for metagenomic analysis and 

kept frozen in the Jay Lab for use in qPCR experiments. The filters were removed using 

sterilized forceps, torn into small pieces, and transferred to Lysing Matrix E tubes. The 

remaining ethanol solution was centrifuged at 5000 g for 10 minutes, the ethanol was carefully 

discarded, and the pellet was resuspended in 978 µL Sodium Phosphate Buffer. The resuspended 

pellets were added to the Lysing Matrix E tubes. Following the MP FastDNA™ SPIN Kit for 

Soil protocol, 122 µL MT Buffer was added to each tube, and the samples were homogenized in 

a BeadBeater for 1.5 minutes twice with a 5-minute rest in between. The tubes were then 

centrifuged at 14,000 × g for 10 minutes to pellet debris. The supernatant was transferred to 

clean tubes, mixed with 250 µL PPS, and centrifuged again at 14,000 × g for 5 minutes. The 

resulting supernatant was combined with 1.0 mL of Binding Matrix suspension and mixed for 2 

minutes. After allowing the mixture to settle for 3 minutes, 500 µL of the supernatant was 

discarded. The remaining mixture was transferred in portions to a SPIN filter and centrifuged at 

14,000 × g for 1 minute. The filter was washed with 500 µL SEWS-M, centrifuged, and dried by 

an additional centrifugation step. Finally, the Binding Matrix was resuspended in 100 µL DES, 

optionally incubated at 55°C for 5 minutes, and centrifuged to elute the purified DNA. 
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Culture-based Method 

IDEXX Colilert 18 

To gauge the prevalence of viable ARGs from bacteria recovered from samples, surface 

water collected at sample sites was added to IDEXX Quanti-Tray/2000 System with Colilert 18 

to monitor total coliform and E. coli, according to the manufacturer’s instructions. In addition, 

the kit was modified with the addition of antibiotics to determine extended spectrum beta-

lactamase (ESBL) total coliform, and ESBL E. coli.  

Each site set included 6 IDEXX Quanti-Trays and 6 Nalgene bottles (100 mL), labeled as 

site-dilution-antibiotic. MilliQ water was added to the Nalgene bottles according to the IDEXX 

Dilution Sheet. Each bottle contained a dissolved IDEXX Colilert 18 powder packet and the 

appropriate antibiotic stock. After shaking a bottle of water sample and allowing it to settle, it 

was added to the Nalgene bottle using a pipette. The resulting solution was poured into the 

Quanti-Trays and placed upright in a metal basket. The Quanti-Trays were inserted into a rubber 

insert and then into the Quanti-Tray Sealer. The trays were incubated at 35℃ ± 0.5ºC for 18-22 

hours, and the start time was recorded every time. 

Molecular-Based Methods 

q-PCR  

Target ARGs tetW, sul1, intI1, ermF, blaSHV, and MST genes pig2Bac, CowM2, CowM3, 

blaCTX, and 16S were chosen for their relevance to human health and documented prevalence in 

the environment. qPCR assays for each target gene were performed on a StepOnePlus Real-Time 

PCR System using SYBR Green Master Mix or TaqMan Master Mix for MSTs. Master Mix was 

prepared using template DNA, water, forward and reverse primers, and the SYBR 

Green/TaqMan master mix. DNA extracts from each sample site were added in addition to 
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Master Mix into individual wells of a 96-well plate, with three biological replicates for each 

sample. A triplicate negative control and triplicate standard curves of 10-fold serially diluted 

standards of each target ARG were included on each plate. Known concentrations of plasmid 

DNA were prepared and included in each assay to establish a standard curve for quantification of 

target gene abundance in the samples. qPCR data was analyzed using StepOne Software 

(Thermo Fisher Scientific). Cycle threshold (Ct) values were determined for each sample, and 

the abundance of target ARGs will be quantified relative to the standard curve. 

Shotgun Metagenomic Sequencing  

Complementary DNA strands, known as “paired ends” in metagenomics, were sequenced 

for 300 cycles on the Illumina NovaSeq 6000 system by Mr. DNA, an external bioinformatics 

lab. To improve data-processing efficiency, low-quality reads were filtered and assembled using 

Trimmomatic on Galaxy. ARGs were identified and quantified from the assembled contigs using 

ARGs-OAP (normalized 16S subtype), an online pipeline that required coding in Python. The 

resistome risk score for each file was calculated on the MetaCompare website based on the 

number of ARGs, mobile genetic elements (MGEs), and pathogen abundance present. 

Taxonomic identification of bacteria present at genus and phylum levels was conducted on 

paired mates files using the platform NMDC-EDGE.    
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 Results 

IDEXX Cultures: Total Coliform and E. coli 

A B

C D

Figure 1: IDEXX Results Each site was cultured with and without the addition of antibiotics and incubated for 24 hours. 
Fall 2023 samples are presented in blue and Spring 2024 samples in red across all four graphs. A) Depicts the total coliform 
concentration per 100 mL of water sample. B) Depicts the concentration of E. coli per 100 ml water sample. C) While TC 
concentrations were comparable between fall and spring samples, the percentage of resistant total coliform detected by 
IDEXX was much higher in spring samples compared to fall. D) Depicts % of resistant E. coli. 
 

 

* * * * 

* * * * 
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In Figure 1, while the concentrations of total coliforms (TC) and E. coli were comparable 

between fall and spring samples, as depicted in previous graphs, there was a notable difference in 

the percentage of resistant total coliforms detected by IDEXX, with a considerably higher 

proportion observed in spring samples compared to fall. One plausible explanation for this is the 

samples in the spring were taken soon after calving season where young animals could be 

exposed to more antibiotics in a feed in an effort to prevent disease and increase growth. 

Furthermore, in the Seasonal qPCR Analysis of Antibiotic Resistance Genes (ARGs) and 

Microbial Source Tracking (MST) Markers, conducted as part of this study, it was observed that 

markers were below the detection limit in Fall 2023. Subsequently, the targeted ARGs—tetW, 

ermf, blaSHV, and blaCTX—were compared across seasons, revealing significant variations. 

Additionally, MST markers pig2bac and cowM3 were detected exclusively in Spring 2024. 

 

 

Figure 2. Seasonal qPCR Analysis of Antibiotic Resistance Genes (ARGs) and 
Microbial Source Tracking (MST) Markers. Markers were below detection limit in 
Fall 2023. The targeted ARGs—tetW, ermf, blaSHV, and blaCTX—were compared 
across seasons. Additionally, MST markers pig2bac and cowM3 were detected in Spring 
2024. This comparison highlights seasonal variations in the presence and abundance of 
specific ARGs and MST markers. 
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qPCR Analysis: Antibiotic Resistant Genes and Microbial Source Tracking 

 

Figure 3. Spring QPCR ARG Results : Total Gene Copy Concentration Per Site in 2024 Samples. A) Concentrations of all 
samples illustrations limited by blashv results being exponentially larger than other genes. B) Close up of figure A. showing 
specific concentrations of other genes, not displayed due to differing scales of concentrations. Blashv was present in almost all 
sites at differing scales of concentrations.  
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Figure 4 : Spring QPCR MST results. Sites where no gene detection resulted in no results were marked as 0 due to the 
technical workings of the graph formation. CowM2 and CowM3 were not detected in almost all sites. Pig2bac were detected in 
most of the sites tested.  
 
 

 
Metagenomic Analysis  

 

 

Figure 5. This graph shows ARGs gene abundance normalized against 16s rRNA abundance from samples from dairy, dairy and swine, 
non-agricultural control, and wastewater input sites. These results are from the ARGs-OAP pipeline, an online analysis workflow for 
antibiotic resistance genes detection from metagenomic data using an integrated structured ARG-database. 
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Table 2A. MetaCompare pipeline results from Fall 2023 sequenced sample sites 

 

Table 2B. Source averaged MetaCompare pipeline results from Fall 2023 sequenced 

sample sites 

Figure 5 illustrates that antibiotic resistance genes (ARGs) related to bacitracin resistance 

were the most prevalent, followed by those associated with multidrug resistance and polymyxin 

resistance. The total abundance of 16S rRNA gene-normalized ARGs ranged from 0.12 to 0.21 

in CAFO-impacted sites. In wastewater-impacted sites, ARGs abundance was similar at 0.17 to 

this range, but it was significantly lower in non-agricultural control samples, at 0.08. Bacitracin, 
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commonly utilized in livestock, serves primarily as a feed additive aimed at promoting growth 

and enhancing feed efficiency. This application stems from its efficacy in inhibiting gram-

positive bacterial infections, consequently bolstering the overall health and growth rates of the 

animals. Within agricultural contexts, bacitracin is administered at low concentrations (Merck). 

However, since bacitracin is minimally absorbed from the gastrointestinal tract of animals, its 

excretion via urine and feces can introduce resistant bacteria into the environment. This process 

constitutes an important pathway through which bacitracin-resistant bacteria disseminate in 

water bodies and soil, potentially transferring resistance genes to other bacteria (Merck). 

Polymyxin antibiotics, categorized as cationic antimicrobial peptides, represent a last 

resort for treating multidrug-resistant Gram-negative bacterial infections and have been 

employed in veterinary medicine for several decades (Merck). Concerns over Polymyxin 

resistance have resulted in regulated use of the antibiotic in countries like Europe (Jansen et al., 

2022), yet eight out of nine CAFO-impacted sites exhibited higher 16s rRNA gene normalized 

abundance compared to the non-agriculture impacted site, with site 4A’s abundance polymyxin 

resistance making up 20% of ARGs. Widespread use of Polymyxin has led to recent research 

that emphasizes the risk of zoonotic transmission of polymyxin resistance (Scott et al., 2019).  

Resistance to beta-lactam antibiotics, a class of antibiotics widely used in livestock 

(Coyne et al., 2019), was also more abundant in the majority of CAFO-impacted sites compared 

to both non-agricultural and  wastewater-impacted areas. Similarly, tetracycline-resistant genes 

were prevalent in CAFO-affected regions compared to wastewater and non-agricultural impacted 

sites. Tetracycline, commonly used in the swine and dairy industries, has been associated with 

the development of resistance, as highlighted in various studies (Coyne et al., 2019). 
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Tables 1 and 2 showcase the outcomes of the MetaCompare pipeline analysis, illustrating 

the development of the “resistome risk” metric. This metric assesses the likelihood of ARGs 

associating with mobile genetic elements (MGEs) and transferring to pathogens, based on 

metagenomic data. Specifically, the analysis reveals that among the CAFO sources examined, 

both dairy and swine demonstrate a notably higher average risk score compared to dairy alone. 

Wastewater input exhibits the highest risk score, succeeded by dairy and swine, followed by 

dairy alone, and finally, a control group with non-agricultural impacted site.  

Bacterial Community Analysis  

 

Figure 6: Top 8 Bacteria Phyla Abundance from Fall samples 
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Table 3. NMDC-EDGE Read: Overview of Genera Classification Results from Fall 

Samples 

Site # Site type 1 2 3 4 5 6 7 8 9 10 

1A Dairy Pseudo
monas 

Flavobac
terium 

Limno
habita
ns 

Acidov
orax Homo Rhodo

ferax 
Variovo
rax 

Polaro
mona
s 

Hydro
genop
haga 

Dechl
oromo
nas 

2A Dairy Arcobac
ter 

Polynucl
eobacter 

Flavob
acteriu
m 

Pseud
omona
s 

Acinet
obacte
r 

Acido
vorax 

Auranti
microbi
um 

Rhodo
ferax Homo 

Hydro
genop
haga 

3A Dairy Homo Pseudo
monas 

Acidov
orax 

Rhodof
erax 

Variov
orax 

Dechl
oromo
nas 

Hhydro
genoph
aga 

Rubriv
ivax 

Burkh
olderi
a 

Geoba
cter 

4A Dairy Polynucl
eobacter 

Aurantim
icrobium 

Limno
habita
ns 

Candid
atus 
Plankt
ophila 

Pseud
omona
s 

Rhodo
luna 

Flavob
acteriu
m 

Rhodo
ferax Homo Acido

vorax 

5A Swine and 
Dairy 

Pseudo
monas 

Flavobac
terium 

Acidov
orax 

Rhodo
coccus Homo Rhodo

ferax 
Variovo
rax 

Strept
omyce
s 

Hydro
genop
haga 

Bradyr
hizobi
um 

6A Swine and 
Dairy 

Pseudo
monas 

Dechloro
monas 

Acidov
orax 

Strepto
myces 

Burkho
lderia 

Leptot
hrix 

Variovo
rax 

Bradyr
hizobi
um 

Flavob
acteri
um 

Cupria
vidus 

7A Dairy Gemmo
bacter 

Aurantim
icrobium 

Flavob
acteriu
m 

Homo Rhodo
bacter 

Parac
occus 

Novosp
hingobi
um 

Limno
habita
ns 

Polyn
ucleob
acter 

Pseud
omon
as 

8A Swine and 
Dairy Homo Pseudo

monas 
Strepto
myces 

Aquas
pirillu
m 

Burkho
lderia 

Raoult
ella 

Variovo
rax 

Acido
vorax 

Cupria
vidus 

Bradyr
hizobi
um 

9A Swine and 
Dairy 

Polynucl
eobacter 

Flavobac
terium 

Auranti
microb
ium 

Limno
habita
ns 

Homo Acido
vorax 

Rhodof
erax 

Pseud
omon
as 

Rhodo
luna 

Hydro
genop
haga 

10A 
Non- 
agricultural 
control 

Homo Limnoha
bitans 

Pseud
omona
s 

Candid
atus 
Plankt
ophila 

Mycob
acteriu
m 

Anaba
ena 

Mycolic
ibacteri
um 

Hydro
genop
haga 

Acido
vorax 

Polyn
ucleob
acter 

11A 
Wastewater 
treatment 
plant 

Candida
tus 
Planktop
hila 

Limnoha
bitans 

Polynu
cleoba
cter 

Flavob
acteriu
m 

Rhodol
una 

Pseud
omon
as 

Candid
atus 
Nanop
elagicu
s 

Acido
vorax 

Rhodo
coccu
s 

Candi
datus 
Methyl
opumi
lus 

 

In Figure 6, the prevalence of Proteobacteria stands out as significantly higher compared 

to other bacterial phyla, with Actinobacteria and Bacteroidetes following behind. Notably, sites 

impacted by CAFOS exhibit distinct relative abundance patterns in comparison to wastewater 
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and non-agricultural profiles. Specifically, these CAFO-affected sites display elevated levels of 

Proteobacteria and considerable abundance of Actinobacteria in wastewater samples.This aligns 

Phylum analysis conducted by Hu et al. 2016 indicates that the transfer of antibiotic resistance 

between farm animals and humans primarily occurs through the dissemination of mobile ARGs, 

notably enriched in Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes. Both 

Firmicutes and Bacteroidetes are prevalent phyla found in swine manure, but Zhang et al. 2019 

found that the presence of Bacteroidetes and Proteobacteria is crucial in shaping the profiles of 

ARGs. The presence of such phylum in Figure 4 is consistent with these findings in that the 

microbial composition within swine manure could primarily facilitate the transfer of ARGs.  

The above table (Table 3) displays the top 10 bacterial genera most abundant at each site. 

Pseudomonas (phylum Proteobacteria) was detected at every site and consistently ranked within 

the top one or two genera for sites near CAFOs. A notable zoonotic pathogen from this genus is 

Pseudomonas aeruginosa, a Gram-negative aerobic flagellated bacterial species (Alonso-Calleja 

et al., 2021, p. 2). It is commonly found in soil and water but also has been detected in produce 

and hospitals. A recent study published by Cravioto et al. (2024) found P. aeruginosa in cattle, 

sheep, goats, and horses, which aligns with our finding of greater abundance of Pseudomonas 

near CAFOs. Capable of infecting both plants and animals, P. aeruginosa is a highly adaptable 

pathogen that exhibits inherent and acquired multidrug resistance, where a singular bacterial 

strain can eradicate more than one drug from its system (Alonso-Calleja et al., 2021, p. 2). It can 

infect the respiratory system, urinary tract, blood, skin, and other bodily parts of livestock and 

humans (Jabłoński et al., 2019, p. 2).  

Burkholderia (phylum Proteobacteria) was detected within the top ten genera for sites 

3,6, and 8, located near CAFOs. These Gram-negative bacteria are normally found in soil and 
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water, while pathogenic species like Burkholderia pseudomallei and Burkholderia cepacia 

complex infect humans and animals, including domestic cattle (Ali et al., 2019, p. 2). 

Melioidosis, an infection of the host by B. pseudomallei, causes pneumonia, encephalitis, and 

other issues with the immune system, but is rarely transmitted through interspecific interactions 

(Currie et al., 2024, p. 155-156).    

Streptomyces (phylum Actinomycetota) was detected within the top ten genera for sites 5, 

6, and 8 only, all located near swine and dairy CAFOs. Species within this genus are 

thermophilic Gram-positive bacteria that form spores, a reproductive mechanism suited for harsh 

conditions (Khadayat et al., 2020). It is commonly found in soil, animal feed, and manure, and 

can survive in aquatic environments (Valdezate, 2022). Although rarely pathogenic, certain 

species are capable of infecting plants and animals. Watson et al. (2022) reported cases of 

mycetoma, a chronic skin infection, in Sudan, caused by Streptomyces somaliensis and 

Streptomyces sudanensis. Nonetheless, Streptomyces plays an integral role in modern medicine. 

Streptothricin, an ARG detected at a few sites in MI (Fig. 3), is one of many antibiotics derived 

from Streptomyces (Gopalakrishnan et al., 2020). Moreover, recent studies incorporated this 

hardy bacteria into swine manure fertilizer to examine its ability to extract nutrients and remove 

ARGs from agricultural fields (Chi et al., 2020; Sha et al., 2022).  

Flavobacterium (phylum Bacteroidota) was detected at 8 sites near CAFOs and a 

wastewater treatment plant. These Gram-negative aerobic bacteria are found in various 

environments, including water (Enisoglu-Atalay et al., 2018). Flavobacteria are recognized as 

fish pathogens. While not a significant threat to human health, Wahli et al. (2018) observed a 

previously unidentified species of Flavobacteria in MI that may be the causal factor of diseases 

in fish populations. The myriad health implications posed by aquatic bacterial communities near 
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CAFOs demonstrate the gravity of antibiotic resistance occurrence, a repercussion of industrial 

farming to workers and local residents.  
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Discussion 

Limitations 

IDEXX Colilert-18 

 IDEXX can only detect culturable cells. As a result, viable but not culturable cells cannot 

be detected by this method (McLain et al., 2016, p. 437). This could result in an underestimation 

of the abundance of bacterial species, including those capable of spreading antibiotic resistance. 

Moreover, only a selective number of microbial species can be cultured in a laboratory 

environment, a phenomenon known as “culture bias” (McLain et al., 2016, p. 438). Therefore, 

IDEXX, a culture-based method, will not produce sufficiently representative results for a study 

of the environmental resistome.  

qPCR 

 The real-time/quantitative polymerase chain reaction technique necessitates the selection 

of specific ARGs before sample analysis as it requires gene-specific primers. This selective 

process could prevent the detection of other ARGs in the sample (Liguori et al., 2022). 

Additionally, qPCR utilizes extracted DNA, and thus cannot discern between ARGs from viable 

hosts and those in non-viable hosts present in the sample. 

Metagenomics 

Metagenomic analysis, while comprehensive, lacks sensitivity as it examines the entire 

genome present (Liguori et al., p. 9152). It is thus less adept than IDEXX Colilert 18 and qPCR 

at detecting ARGs and other rare genes. Given this limitation, the actual resistome risk score at 

each site may be higher than our calculations. Moreover, previous studies found discrepancies in 

the diversity of genes calculated for samples based on the sampling method used (Liguori et al., 

p. 9152). For our research, the “grab” technique, where a single sample was collected from each 
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site in MI, was optimal given the time constraints and the risk of negative interactions with 

residents. Composite sampling, on the other hand, entails collecting multiple samples within a 

designated timeframe, hence the assumption that it would better represent diverse bacterial 

communities (Huijbers et al., p. 3). Therefore, our metagenomic analysis results may reflect an 

underestimation of bacterial diversity.  

The costliness, time-consuming, and online nature of metagenomic analysis limits 

accessibility. Results may vary based on the platform used to analyze since different databases 

store different reference genes and species (Liguori et al., p. 9152). As novices to bioinformatics, 

our team felt challenged by the coding aspect of our project. Unfortunately, we could not 

conduct metagenomic analysis on samples collected in the spring, which have yet to be 

processed by Mr. DNA, the non-UCLA-affiliated DNA-sequencing lab.  

Relevant Policies 

Policy gaps and intentional allowances granted to CAFOs enable the contamination of 

water by animal fecal matter. For example, the USDA has a “zero tolerance policy” for fecal 

contamination of meat products. This policy, however, only applies to visible contamination, so 

the risks incurred by trace amounts of fecal matter go unmitigated (USDA, 2019). Specifically, 

the USDA’s Food Safety and Inspection Service’s Directive 6420.2, Revision 2, states that the 

zero tolerance standard applies to “visible fecal material” of which the individual examining the 

carcass determines that “both color and texture characteristics are identifiable” (U.S. Department 

of Agriculture, Food Safety and Inspection Service, 2020). 

CWA requires point sources to file for a National Pollution Discharge Elimination 

System (NPDES) permit, granted to the permittee by individual state agencies. Moreover, point 

sources must not emit more than the “total maximum daily load” (TMDL) allowed, which refers 
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to the maximum level of chemical or microbial emissions permitted by the state. In 2020, the 

Michigan Farm Bureau (MFB) filed a lawsuit against EGLE (Department of Environment, Great 

Lakes, and Energy in MI), decrying the new NPDES permit conditions created for CAFOs. MFB 

accused EGLE of a lack of scientific evidence provided for allegations that CAFOs worsened 

water quality (ELPC, 2024). In addition, MFB claimed that EGLE violated the Administrative 

Procedures Act of 1969 (APA), an MI legislature that details specific requirements for 

rulemaking versus license programs. According to the plaintiff, EGLE should have sought public 

commentary per the APA for rulemaking processes. This lawsuit has undergone multiple 

appeals; if the MI Supreme Court rules in favor of MFB, the NPDES conditions in question will 

be invalidated as “unpromulgated rules” and could compromise EGLE’s broader permit-issuing 

authority (Environmental Law & Policy Center, 2024). Such a localized process of pollution 

regulation is thus vulnerable to lobbyists who “help enact mechanisms that strip these 

communities of meaningful ways to fight” (Ren, 2022).  

CAFOs can avoid NPDES permits if they do not discharge into “national” waters or 

repurpose fecal waste. When fecal waste is reused as manure, the CAFO producing that manure 

“...should not be held accountable for any discharge that is primarily the result of 

‘precipitation’”(Ren, 2022). The permit currently requires more transparency on how waste is 

transported between farms, especially in impaired watersheds. However, these requirements have 

not been viable in the contamination by CAFOs of public waterways; manure application in the 

wintertime, which serves no fertilizing purpose given the season, may still occur due to the 

permit’s technicalities. 

The Michigan Environmental Council reported that the demands of the existing permit 

“allow[s] risky management to continue,” which raised concerns that health repercussions will 
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persist if amendments are not made to NPDES requirements (MEC, 2020). The Environmental 

Law and Policy Center (ELPC) recommended lowering TMDL for phosphorus and nitrates in 

the permit renewal (ELPC, 2024). However, the lack of suggestions for TMDL concerning E. 

coli and other microbial pollution exemplifies the general public’s negligence of biohazards from 

CAFOs.  

Implications 

 When cross-compared where applicable, results from IDEXX, qPCR, and metagenomic 

methods supported one another. For example, IDEXX results showed lower percentages of 

resistant E. coli and total coliform across fall samples compared to spring. qPCR results 

confirmed this trend, tending toward lower concentrations of selected ARGs in fall samples as 

compared to spring. While methods such as qPCR and metagenomics are valuable for their 

specificity, IDEXX, which cultures samples both with and without antibiotics at various 

dilutions, can reveal broader trends in the antibiotic resistome within 24 hours of sample 

submission to a lab. Therefore, IDEXX should be incorporated into ARB surveillance protocols 

as a primary screening tool. qPCR and metagenomic analysis, the traditionally used methods, 

should be incorporated when a more comprehensive analysis of specific ARGs, MSTs, or 

bacterial communities is desired.  
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