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Abstract

The focus of this study was to determine the prospective health effects of the transition to
zero-emission vehicles (ZEVs) in California. To do so, the California on-road vehicle population
estimates from a fleet database were organized with their corresponding emission factors and
CalEnviroScreen (CES) scores using RStudio. The Advanced Clean Cars II (ACC II) regulations
require all new passenger vehicles in California to be zero-emissions by 2035. This will
drastically decrease the emissions produced by light-duty vehicles and trucks. However, it is
unclear how the resulting air pollution reduction and avoided health impacts will be distributed
across California’s communities. To investigate this transition, four future scenarios were created
using the varying ZEV adoption rates provided by ACC II. The emissions data was projected
through 2035 and then run through a new modeling program that combines InMap and BENMap
software, called the ISRM Tool. The results highlight the unequal air pollution burden and
environmental injustices based on CES scores, ethnicity, and income across disadvantaged
communities (DACs). The data on fine particulate matter (PM2.5) health effects was connected to
the selected communities and respective scenarios. From our study, we were able to see that the
transition to ZEVs at today’s current rates will increase existing disparities. It is crucial to
introduce future policies that alleviate the disproportionate impact on disadvantaged
communities.



Introduction
The transportation sector is the largest contributor to greenhouse gas (GHG) emissions in

the state of California and the United States as a whole. These emissions primarily come from
the burning of fossil fuels to power cars, trucks, ships, trains, and planes (U.S. Environmental
Protection Agency, 2020). In 2020, approximately 140 million metric tonnes of carbon dioxide
(CO2) were emitted from the transportation sector in California, and about 70% of these
emissions came just from passenger vehicles (CARB, 2022-a). Carbon dioxide is the GHG most
responsible for our warming planet. In less than 200 years, since the Industrial Revolution,
human activities have raised atmospheric CO2by 50%, leading to global climate change (NASA,
2023). Internal combustion engine vehicles (ICEVs) also emit harmful air pollutants such as fine
particulate matter, also known as PM2.5. Small enough to penetrate deep into the lungs and the
bloodstream, long term exposure to PM2.5 contributed to 4.14 million deaths worldwide in 2019,
which made up 62% of all deaths attributable to air pollution (HEI, 2020). Acute exposure can
lead to exacerbated lung and heart ailments as well as asthma attacks. Chronic exposure has been
linked to both cardiovascular and respiratory diseases, has increased risk of affecting
reproductive outcomes and cancer outcomes, and has been found to cause mortality (U.S. EPA,
2009). Previous research has estimated that PM2.5 emissions from transportation lead to
approximately 3,100 premature deaths per year in California due to cardiovascular disease, heart
attacks, and other illnesses (Tessum, et al., 2014; Krewski et al., 2009). Thus, transportation
contributes to both climate change and air pollution, two environmental hazards that undoubtedly
threaten public health and need to be addressed.

In their “State of the Air” 2023 Report, the American Lung Association (ALA) (2023)
determined that more than one in three Americans live in counties with unhealthy levels of ozone
or particulate pollution. The report specifically looked at levels of ozone, short-term particle
pollution, and year-round particle pollution, and California cities occupied the top three slots for
ozone and year-round particle pollution. They also occupied the top two slots for short-term
particle pollution. The report also re-emphasized that exposure to air pollution is not evenly
distributed amongst communities. They found that people of color are 3.7 times more likely than
white people to live in a county with a failing grade for at least one pollutant (ALA, 2023). This
is a clear environmental injustice, and it is the result of discriminatory practices (e.g. redlining).
A recent UCLA-led study similarly found that the most disadvantaged communities in Los
Angeles not only contained a greater amount of pollution, but also that the pollution in these
areas was more toxic than in other parts of Los Angeles (J. Shen et al., 2022). This study’s
definition of disadvantaged referred to census tracts in the 25 percent of LA communities facing
the most socioeconomic disadvantages. They also determined that in the LA areas sampled, 42%
of total air toxicity came from tailpipe emissions, and pollution in high-traffic areas was about
50% higher due to vehicle-related pollution than it was in other urban communities located
further from streets or highways. Thus, these communities are disproportionately put at a higher
risk for many health conditions due to the air pollution emitted from vehicles.

In August 2022, the California Air Resources Board (CARB) approved the Advanced
Clean Cars II Rule, which mandates that all new vehicle sales in California must be ZEVs by
2035, along with intermediate ZEV milestones until that date. This rulemaking codifies the
light-duty vehicle (LDV) goals described in Governor Newsom’s Executive Order N-79-20
(CARB, 2022-c). Our practicum team aims to model multiple scenarios of this zero emission
vehicle (ZEV) transition where rates of ZEV adoption vary among communities in California.
ZEVs are expected to reduce emissions and concentrations of pollutants such as CO2 and PM2.5.



These reductions will not only help combat climate change but also reduce premature mortalities
and improve the state’s overall public health. CARB estimates that this regulation will lead to a
25% reduction in smog-causing pollution from LDVs, which will benefit “all Californians but
especially the state’s most environmentally and economically burdened communities along
freeways and other heavily traveled thoroughfares” (CARB, 2022-c, para. 6). However, the cost
of current ZEVs is mostly inaccessible to California’s disadvantaged communities (DACs) who
are the most burdened by air pollution. Adoption of new ZEVs in these communities occur at an
extremely low rate – only 5.7% of total ZEV sales in the state for the period between 2010 and
2017, despite accounting for approximately 23.6% of the population (CARB, 2022-b). While we
expect the ACC II transition to reduce air pollution in disadvantaged communities even at these
low rates, it is unclear if the transition will be enough to eliminate the pre-existing disparity. Our
goal was to determine the air quality and health benefits these communities would experience
from possible future scenarios of ZEV adoption. To do this, we compared the current adoption
rates with more equitable adoption rates by projecting vehicle emissions to 2035. We then used
the new modeling program, the ISRM tool, to observe how the distribution of PM2.5
concentrations and the corresponding health benefits varied across the scenarios. We hope that
this work will quicken an equitable transition that reduces existing disparities in ZEV access and
air pollution exposure.



Methodology
1.1 Data Sources

Emissions Factor Data
We sourced emissions factor data from the EMission FACtor (EMFAC) Emissions

Inventory website, a database provided by the California Air Resources Board (CARB). We
downloaded datasets for 2019 to 2036, and these datasets were used for our baseline data and
also for the projections. The annual onroad emission factors data was downloaded at the county
level using the EMFAC2021 v1.0.2 model version. The data was filtered to only include
emission factors for passenger cars (LDA) and light-duty trucks (LDT1, LDT2) since these are
the vehicle categories that will be included under the ACC II regulations (CARB, 2022-b). While
this study does not include medium duty vehicles (MDV), future studies should since this
category is also included under the ACC II’s light duty vehicle regulations. Therefore, MDVs are
also expected to transition to zero emission by 2035, which will be further discussed in the
limitations section. We chose to aggregate the “speed” variable, but selected all available options
for the “fuel” variable. Lastly, the output unit for these emissions was chosen at tons per year.

Provided Emissions Data for Validation
We also utilized a high-resolution emission dataset (1km x 1km) from 2019 that was

provided by CARB in order to check the validity of our data method which we will refer to as
EMFAC 2019 throughout the rest of the report. This dataset aggregates total vehicle emissions
for an area and then redistributes emissions to the streets based on traffic data. In comparison,
our data method assigns emissions to the census block group that a vehicle is registered in. This
means our method attributes emissions to the home of the vehicle and not necessarily where the
vehicle is being driven.

Vehicle Fleet Data
We sourced vehicle fleet data from the EMFAC Fleet Database website of the same

CARB database. We downloaded the 2020 dataset which includes vehicles with model years
between 1975 and 2021. This was the most recent year included in the database at the time of
download. We filtered the vehicle category to only include passenger cars (P) and light-duty
trucks (T1, T2). Similar to the emission factors data, our study did not include medium duty
vehicles (T3), however, future studies should since they are also expected to transition. We chose
to aggregate the “electric mile range variable”, but included every option for the “fuel type, fuel
technology, model year, and number of vehicles registered at the same address” variables. Lastly,
we chose the “vehicle population output aggregation” to be given by census block group code,
since this was the highest level of spatial resolution available.

2020 Census Block Group Data
We downloaded the 2020 vintage of Census block group data from the United States

Census Bureau. Since the vehicle fleet data utilizes 2020 Census block groups to spatially assign

https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html


vehicles, we sourced 2020 block group data to provide an appropriate spatial component for the
emissions data.

CalEnviroScreen (CES) 4.0
CalEnviroScreen is a mapping tool created by one of our stakeholders, the Office of

Environmental Health Hazard Assessment (OEHHA), that can help identify which communities
are most affected by various types of pollution. It uses environmental, health, and socioeconomic
information to produce a “burden” score for every census tract in the state of California
(OEHHA, 2023). A census tract with a high score corresponds to a much higher pollution burden
than those with a low score. The tool considers cumulative impacts from all pollution sources
and accounts for vulnerable subpopulations such as young children (OEHHA, 2023). These
scores are projected onto a map of California for visual analysis but can also be downloaded as
an Excel spreadsheet which is what we utilized for this project. This data was last updated in
October 2021.

Median Household Income Data/Non-White Population Data
Median Household Income and the Non-White Population in California were taken from

the American Community Survey (ACS) provided by the United States Census Bureau. The
American Community Survey release of 2020 provides a wide range of statistical data on the
people and housing of every census tract in the United States.

RStudio was used to extract the median household income and non-white population
from the ACS provided by the Census Bureau. Selected variables were chosen from ACS 2020
including the median household income in the past 12 months (B19013_001E), total population
(B02002_001E), non-Hispanic white population (B03002_003E), Black or African American
population (B03002_004E), American Indian and Alaska Native Population (B03002_005E),
Asian population (B03002_006E), Native Hawaiian and Other Pacific Islander population
(B03002_007E), some other race, non-Hispanic population (B03002_008E), two or more races,
non-Hispanic population (B03002_009E), Hispanic or Latino population (B03002_012E). All of
the preceding race variables were imported into RStudio to filter the non-white population. This
was done by calculating the percent of non-white population over the total population. Both of
the income and non-white values were converted into percentiles to create a consistent system of
measurement.

1.2 Preparing the Baseline Data

To prepare the total emissions data for our baseline year of 2020 and the future
projections, we used RStudio data analysis. As previously mentioned, we prepared the 2020 fleet
data from the California Air Resources Board (CARB) database, EMission FACtor (EMFAC)
Fleet Database Website. This data was filtered to only include passenger cars (P) and light-duty
trucks (T1, T2). The large number of vehicles in California resulted in large datasets, thus, the

https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://api.census.gov/data/2020/acs/acs5/variables.html
https://api.census.gov/data/2020/acs/acs5/variables.html


data was downloaded county by county and then combined into one dataset in R. Once
combined, the raw data required cleaning and processing. We first removed any rows with
census block group codes that were “scrubbed” or removed, since this is the main geographic
census unit utilized in this study for pollution distribution and health impacts. We also removed
any “NA” row values under the model year variable. Without values for these variables, we
could not assign the vehicles a location or emission rate.

We then prepared the 2020 emission factors data from the EMFAC Emissions Inventory
website of the same CARB database. This data was also filtered to only include passenger cars
(LDA) and light-duty trucks (LDT1, LDT2). Additionally, it was filtered to pollutants that
contribute to primary or secondary formation of PM2.5. This includes the running emissions for
NH3, the total exhaust emissions for NOx and SOx, and the total emissions for PM2.5 and reactive
organic gases (ROG). ROGs are the most similar to the Environmental Protection Agency’s
(EPA) definition for volatile organic compounds (VOC). For simplicity, the VOC term will be
used when referring to this class of pollutant moving forward. The emissions inventory provides
total emissions for each type of vehicle based on its model year, fuel, county, etc. Therefore, we
first needed to calculate the emission rates for each type of vehicle, and this was done by
dividing the total emissions of each pollutant class by the vehicle population variable.
Additionally, there were some discrepancies between the fleet and emissions data. For example,
the fleet data from the year 2020 includes vehicles with model years between 1975 and 2021.
However, the emission factors data from 2020 only includes vehicles with model years between
1976 and 2020. To solve this issue, we also downloaded emission factors data from the years
2019 and 2021, and these years provided us with the emission factors for vehicles with model
years 1975 and 2021, respectively.

In order to join the fleet data to the emissions data, the names of the vehicle categories in
the fleet data needed to be recoded to match. This was done by renaming the passenger cars and
light-duty trucks to “LDA, LDT1, and LDT2”. The fuel type names for the fleet data also needed
to be changed to match the fuel names in the emissions data. This was done by renaming the
“Electric” fuel type to “Electricity” and by renaming any “PHEV” fuel technology vehicles to
include a fuel type of “Plug-in Hybrid.” After additional minor processing, the fleet data and the
emissions data were joined by model year, fuel type, vehicle type, and county. Once done, we
could perform calculations for total vehicle emissions for the 2020 year. The previously
calculated emission rates were multiplied by the vehicle population in each census block group
code. There were missing emission rates in the data, for example, the emissions data did not
contain values for natural gas vehicles with a 2017 model year. When joined, these vehicles had
“NA” values, so we chose to also remove these rows. Finally, emissions for PM2.5, VOC, NH3,
NOx and SOx were collapsed by census block group codes.

The CalEnviroScreen (CES) 4.0 data was the last dataset needed before the projections
and subsequent analysis could be performed. We downloaded the data in the form of an Excel
spreadsheet which we then imported into RStudio. Some processing of the raw data was needed,
such as removing any variables beyond the scope of this study like exposure to pesticides or



linguistic isolation. The main variable used from this dataset was the CES 4.0 percentile values,
which tells us how a specific census tract scored in comparison to other tracts. Tracts with a
higher percentile score experienced a higher cumulative pollution burden. Under Senate Bill
(SB) 535, the California Environmental Protection Agency (CalEPA) designated census tracts
receiving the highest 25 percent of overall scores in CES 4.0 as disadvantaged communities
(OEHHA, 2022-a). We chose to follow this designation and similarly divide our census block
groups into four quartiles based on their CES 4.0 percentile (0-25.99, 26-50.99, 51-75.99, and
76-100). This quartile approach was also utilized in an AB32 report (OEHHA, 2022-b). Like SB
535, the 76-100 quartile contains the most disadvantaged communities, and the 1-25 quartile
contains the least disadvantaged. It is important to add this CES data so that PM2.5 concentrations
and their corresponding health impacts can be linked to the quartile and percentile score. This
allows for environmental justice analysis and the direct comparison between various
communities. We also used this quartile approach for additional variables such as median
household income and non-white population which allowed us to perform further analysis. It is
important to note that CalEPA has additional definitions under SB 535 for disadvantaged
communities. This includes lands under the control of federally recognized tribes and tracts
identified in the 2017 DAC designation as disadvantaged, regardless of their scores in
CalEnviroScreen 4.0 (OEHHA, 2022-a). Tracts lacking overall CES scores due to data gaps, but
receiving the highest 5 percent of CES 4.0 cumulative pollution burden scores are also
considered disadvantaged. These communities are equally important, however, this study does
not include any additional criteria in our designation of disadvantaged communities. Therefore,
our designation is an oversimplification, and a more inclusive study should be done in the future.

In order to join the CES data, the census block group codes in the fleet and emissions
data needed to be converted into census tracts, which is the geographic census unit used in CES.
A census block group is a subdivision of a census tract and as such, it has an additional digit at
the end of its numerical identifier. To perform the conversion, we simply divided each census
block group code by 10 to remove the extra digit and then rounded down the decimal to calculate
the whole number. Once completed, the fleet and emissions data could successfully be joined to
the CES scores by census tract. It is important to note that some census tracts did not have a CES
score or percentile value. CalEnviroScreen analyzes data for 8,035 census tracts across the state.
Of these census tracts, 103 did not have an assigned percentile value. This could mean that no
monitoring or reporting was conducted in these tracts or no population was reported. We opted to
remove any census block group codes that did not have a CES percentile value, since we could
not designate it as advantaged or disadvantaged. This resulted in the removal of 5,311 census
block groups and their corresponding vehicles. Overall, we removed 5,027,629
vehicles–approximately 23% of the original data– however, these removals were deemed
necessary due to the design of this study.

After modeling our combined fleet, emission factors, and CES 2020 data, we noticed that
our PM2.5 concentrations were slightly smaller than the 2019 CARB EMFAC modeled data. This
was not unexpected, as our data is from a year heavily impacted by the COVID-19 pandemic.



For a substantial portion of the year, California was in lockdown, many people were working
remotely, and travel was restricted. This led us to analyze the annual trends in the emissions
inventory data, where we observed a significant dip in vehicle miles traveled during 2020, as
shown in Figure 1 below. Vehicle miles traveled is directly related to the vehicle emission factors
(U.S. EPA, n.d.). Therefore, we decided to perform a singular adjustment to account for the
reduced emissions in 2020 from the COVID-19 pandemic so that this did not impact our
projections moving forward. Total emissions were increased by 16.23%—a percentage
proportional to the change in vehicle miles traveled—and modeling the adjusted data showed
similar PM2.5 concentrations and spatial patterns when compared to the 2019 CARB data.

Figure 1. The graph above shows total vehicle miles traveled per year. This data was sourced from the CARB
EMFAC Emissions Inventory website. There is a clear decrease in the year 2020 and then a recovery in the years
following.

The combined fleet, emissions and CES data with the COVID-19 adjustment acted as our
baseline for our projections. This provided the current PM2.5 concentrations in the state for 2020
as well as the corresponding health impacts. From here, we removed vehicles and their
corresponding emissions year by year and then replaced them with new combustion and zero
emission vehicles. Details of this process are included in the following section. The projected
data was then modeled and compared to the baseline to see how the ZEV transition will affect air
pollution in California.

1.3a Projecting for Future Scenarios

To start our projections, we first needed to decide how many cars should be removed
from and added to the fleet each year. This represents vehicles being retired from the fleet each



year and being replaced by newly bought vehicles. Using the same EMFAC Emissions Inventory
website, we downloaded statewide data for the years 2016 to 2022. When analyzing the data, we
observed that total vehicle population for passenger vehicles and light duty trucks stayed fairly
constant throughout this time period, as shown in Figure 2 below. Therefore, we assumed that the
total vehicle population will stay approximately the same throughout all of our projections. The
number of new vehicles introduced into the fleet each year is equal to the number of vehicles
being retired from the fleet. To calculate the number of new vehicles added to the fleet each year,
we sourced data from the California New Car Dealers Association (CNCDA) for the same years,
2016 to 2022. Since we are assuming the vehicle population stays constant, we took the average
of the light duty vehicle registrations for these years and obtained a result of 2,007,143 new light
duty registrations each year. We used data for new registrations instead of new sales to stay
consistent with the EMFAC Fleet Database, which provides vehicle registrations as well.
Registrations are also more likely to accurately represent where vehicles are driven and
emissions occur in comparison to sales, since people will often travel beyond their cities of
residence to buy vehicles. Since 2,007,143 new vehicles are registered each year, then the same
number must be removed from the baseline data along with a proportionate amount of emissions.
To calculate the percentage of emissions being removed each year, we took the average of the
total vehicle population from the EMFAC Emissions Inventory data from 2016 to 2022. This
yielded an average vehicle population of approximately 21,463,965 vehicles. We divided the
number of new vehicles per year by this number, and we determined that approximately 9.35%
of the fleet is being removed each year. Since it is possible for any vehicle in the fleet to be
“retired,” regardless of model year, we decided to remove these emissions uniformly across
vehicle classes. To project this, we removed 9.35% of the PM2.5, VOC, NH3, NOx and SOx

emissions each year from 2020 to 2035. With this method, we assume that the removal of
vehicles from the fleet is proportional to the removal of emissions.



Figure 2. The graph above shows the total vehicle population for passenger vehicles and light duty trucks in
California per year. This data was sourced from the CARB EMFAC Emissions Inventory website. We can observe
that the vehicle population remains fairly constant throughout the years.

Once we determined how many new vehicles were being added to the fleet each year, we
then needed to calculate how many of these vehicles would be zero emission. To make this
calculation, we used the following projection provided by CARB in the ACC II document. This
states the percentage of new vehicles that must be zero emission vehicles each year. This
percentage increases annually until 2035, when 100 percent of new vehicle sales must be zero
emission. However, this projection does not start until the year 2026. So, in order to perform our
projections starting in 2020, we needed to calculate the years in between the CARB projection
and the last year of observed data through linear interpolation. For this, we sourced data from the
same CNCDA data report on ZEV sales for the years 2017 to 2021. At the time of download,
2021 was the most recent year of data available. We used the average increase per year from
2017 to 2021 and then linearly interpolated from 2021 to 2026. This yielded the percentage of
new vehicle sales each year that will be ZEVs. The CARB projection is shown below in Figure
3, and an updated projection from our linear interpolation is shown in Figure 4.

Figure 3. This projection was sourced from the CARB ACC II document (2022). It shows the ZEV and PHEV
percentages of new vehicle sales each year as it ramps up to 100 percent in 2035.



Figure 4. This projection was performed by our team and shows a linear interpolation between observed data
sourced from the CNCDA and the previously shown CARB ACC II projection. This provides us with the ZEV and
PHEV percentage of new vehicle sales for the years between 2021 and 2026.

1.3b The Four Scenarios

Table 1. Percentage of Total California ZEV Sales Distributed to Each Quartile Through All Scenarios

CES Percentile
Scores

Business as
Usual

(Scenario 1)

Equal Spread
of ZEVs

(Scenario 2)

Half to DACs
(Scenario 3)

Three-Fourths
to DACs

(Scenario 4)

0 - 25 (Most
Advantaged) 54.6.% 28.47% 29.30% 14.63%

26 - 50 25.50% 25.55% 13.30% 6.65%

51 - 75 13.90% 24.97% 7.50% 3.72%

76 - 100 (Most
disadvantaged) 6.10% 21.01% 50% 75%

Scenario 1 - Business as Usual
Once we calculated the number of new electric vehicles being added each year, we

needed to figure out how they would be distributed. We created four scenarios, and each scenario
has a different ZEV adoption rate for each CES quartile, as seen in Table 1. This also applies to
the additional variables previously mentioned: median household income and non-white
population. We chose these scenarios to highlight the potential effects of different proposed



adoption rates amongst California’s communities. This is the core of our research question, and
this allowed us to analyze the differences in air pollution reductions and avoided health impacts.
The first scenario was developed based on the current rate of ZEV adoption rates and is a
scenario modeling “business as usual.” ACC II assumes that adoption of new electric vehicles in
disadvantaged communities occurs at an extremely low rate, only making up 5.7 percent of total
ZEV sales in the state (CARB, 2022-b). To calculate the adoption rates in the other three
quartiles, we summed all pre-existing ZEVs in our 2020 baseline fleet data from the EMFAC
Fleet Database website. We found that approximately 6 percent of pre-existing ZEVs were
located in disadvantaged communities (76-100 percentile), which aligned with the rate stated in
the ACC II document. Then, we found 14 percent were located in the next quartile (51-75
percentile), 25 percent in the next quartile (26-50 percentile), and 55 percent in the most
advantaged communities (1-25 percentile). We used these same percentages for our first
projection scenario. However, by 2035, 100 percent of new vehicle sales going into all quartiles
are expected to be electric. Due to the larger percentage going into the most advantaged quartile
(1-25 percentile), their share of new vehicles quickly becomes completely electric. In order to
keep the total number of vehicles balanced, we had to avoid adding extra ZEVs into this quartile.
To do this, we redirected any extra ZEVs into the adjacent quartile (26-50 percentile). Once this
quartile’s share of new vehicles also reaches 100 percent electric, we redirected it to the next
quartile (51-75 percentile) and then finally to the most disadvantaged communities (76-100
percentile). For this reason, the initial percentages for scenario one evolved over the years until
2035. For this scenario, the first quartile (1-25 percentile) reached 100% ZEV sales by 2030,
quartile two (26- 50 percentile) reached 100% by 2031, quartile three (51-75 percentile) reached
100% by 2033, and quartile four (76 - 100 percentile) reached 100% by 2035.

Figure 5. This figure represents scenario one, where current ZEV adoption rates remain the same until 2035. This is
“business as usual,” and we have included this figure for easier visualization of the adoption rates per percentile.



Scenario 2 - Equal Spread of ZEVs
Our second scenario was developed to investigate the effects of a more equitable

transition to ZEVs. In this scenario, the adoption rate is equal to the pre-existing vehicle
percentage in each quartile. The vehicle percentage was also calculated using the 2020 baseline
fleet data from the EMFAC Fleet Database website. We summed the pre-existing vehicles in
each quartile and then divided it by the total number of vehicles in the state of California.
Therefore, our definition of equity for this scenario is having an adoption rate in a quartile equal
its vehicle percentage. These calculations determined that 21.01 percent of vehicles are
registered in disadvantaged communities (76-100 percentile). 24.97 percent of vehicles are in the
next quartile (51-75 percentile), 25.55 percent are in the next quartile (26-50), and finally, 28.47
percent are in the most advantaged communities (1-25 percentile). These percentages are close to
25 percent, however, we can see that disadvantaged communities have the smallest percentage
while most advantaged communities have the largest. Since these adoption rates are based on the
pre-existing vehicle percentages, we did not run into the same problem from scenario one, where
one quartile reaches 100 percent adoption of ZEVs before the others.

Figure 6. This figure represents scenario two, where ZEV adoption rates are equal to the pre-existing vehicle
percentage in each quartile. This is “equal spread of ZEVs” until 2035, and we have included this figure for easier
visualization of the adoption rates per percentile.

Scenario 3 - Half to DACs
Our third scenario shifted most of the ZEVs to the most disadvantaged quartile while

continuing to keep a similar ratio of new ZEV adoption in the other quartiles. We chose this
scenario to investigate how aggressive ZEV adoption must be in DACs in order to erase the
pre-existing air pollution disparity. For this, we decided 50 percent of ZEVs would enter
disadvantaged communities (76-100 percentile), 7.5 percent would enter the next quartile (51-75



percentile), 13.3 percent would enter the next quartile (26-50 percentile), and 29.3 percent of
new ZEVs would go to the most advantaged communities (1-25 percentile). Similar to scenario
one, the most disadvantaged quartile (76-100 percentile) quickly had new car sales at 100
percent electric due to its larger percentage of sales. To compensate for this, we used a similar
method to scenario one by redirecting any extra ZEVs into the adjacent quartile. However, in this
scenario, extra ZEVs from the fourth quartile (76-100 percentile) were added to the third quartile
(51-75 percentile), then to the second, and finally to the most advantaged communities. For this
scenario, the fourth quartile (76 - 100 percentile) reached 100% ZEV sales by 2028, quartile
three (51-75 percentile) reached 100% by 2032, and both quartile one (1 - 25 percentile) and
quartile two (26 - 50 percentile) reached 100% by 2035. In order for there to be such a large
percentage of new ZEV sales in disadvantaged communities, as seen in this scenario, there
would likely have to be some form of new legislation or incentives to increase sales so
dramatically. If this were the case, we would likely see higher new ZEV counts in the next most
disadvantaged communities than in the most advantaged. Thus, the excess ZEV redistribution in
scenario three is formatted to reflect this concept. Therefore, the initial percentages for this
scenario also evolved over the years.

Figure 7. This figure represents scenario three, where ZEV adoption rates prioritize disadvantaged communities
who experience the highest air pollution burden . This is “half to DACs,” and we have included this figure for easier
visualization of the adoption rates per percentile.

Scenario 4 - Three-Fourths to DACs
Our fourth and final scenario investigates even more aggressive rates than seen in

scenario three. For this, we decided 75 percent of ZEVs would enter disadvantaged communities
(76-100 percentile), 3.7 percent would enter the next quartile (51-75 percentile), 6.7 percent
would enter the next quartile (26-50 percentile), and 14.6 percent of new ZEVs would go to the



most advantaged communities (1-25 percentile). With such a large percentage of new ZEV sales
in the most disadvantaged communities, we will see how a drastic decrease in ICEs and their
emissions in these areas can affect the overall California population. Like scenario three, we kept
the ZEV adoption rates in the other three quartiles similar to their current ratio. Scenario four ran
into the same complication as scenario three, where excess of ZEVs needed to be redistributed to
the next most disadvantaged communities. We applied the same logic with this scenario as well,
and extra ZEVs from the fourth quartile (76-100 percentile) were added to the third quartile
(51-75 percentile), then to the second, and finally to the most advantaged communities. For this
scenario, the fourth quartile (76 - 100 percentile) reached 100% ZEV sales by 2025, quartile
three (51-75 percentile) reached 100% by 2030, quartile two (26 - 50 percentile) reached 100%
by 2033, and quartile one (1 - 25 percentile) reached 100% by 2035.

Figure 8. This figure represents scenario four, where current ZEV adoption rates are even more aggressive in
prioritizing disadvantaged communities. This is “three-fourths to DACs,” and we have included this figure for easier
visualization of the adoption rates per percentile.

1.4 Calculating Future Emissions

For every year until 2035, new vehicle sales include both new electric vehicles and new
ICE vehicles. Once we calculated the number of new ZEVs going into each quartile, we next
needed to calculate the number of new ICEVs. Recall that the total number of new vehicles
entering the fleet each year is equal to 2,007,143. To calculate the “Equal Spread of ZEVs”
scenario, we also calculated the vehicle percentages in each of the four quartiles. We then
multiplied these percentages by the total number of new vehicles in order to calculate the total
number of new vehicles going into each quartile every year. Table 2 below shows the results of
these calculations detailing the new vehicle distribution per CES percentile.



Table 2. “Equal Spread of ZEVs” Scenario - New Vehicle Distribution

CES
Percentile

0 - 25.99 26 - 50.99 51 - 75.99 76 - 100
(DACs)

Total

Number of
New Vehicles

571,472 512,866 501,151 421,654 2,007,143

Once done, we subtracted the calculated number of ZEVs each year from these numbers
which gave us the number of new ICEs each year, since the total number of vehicles must remain
balanced. Finally, we needed to distribute these new vehicles to each census block group, since
this was the geographic census data used. To keep vehicles balanced, we decided to distribute
these based on the pre-existing vehicle proportion in each census block group. The proportion of
vehicles for each census block group was calculated by dividing the number of vehicles in each
census block group by the total number of vehicles in the quartile. This proportion was then
multiplied by the number of new ZEVs and ICEs which gave us the number of each in every
census block group.

After this, the next step of the projection was to find emission factors for these projected
cars. To do this, we sourced data from the same EMFAC Emissions Inventory website. CARB
provides projected emission factors for vehicles, likely based on technological advancements or
stricter legislative standards coming down the pipeline. We downloaded statewide emission
factors data from the year 2022 to 2035. For simplicity, we decided that a “new vehicle” would
refer only to vehicles with a model year for the following year. For example, when projecting for
2021, we introduced new vehicles to the fleet that had a model year of 2022. We chose this
method since this is standard practice for car dealerships. One limitation to adding new vehicles
in this manner is that we are unable to account for an increase in pollution from vehicles as they
age. A car will have the same emissions throughout its entire lifetime in the fleet, regardless that
it will age and become “dirtier”. There is currently not enough information regarding at what age
most vehicles are retired and in which communities to allow for accurate estimates regarding an
increase in pollution. Therefore, we are assuming the emission rates of existing vehicles remain
constant.

Once the emissions data was downloaded and imported, we first needed to calculate the
emission rates for each type of vehicle. Like our baseline data, the emissions inventory provides
total emissions for each type of vehicle based on its model year, fuel, county, etc. This was done
in the same manner–by dividing the total emissions of each pollutant class by the vehicle
population variable. We added this emissions data to our baseline data by county, before
collapsing the data down by vehicle type (gasoline, diesel, etc.) and county. This was done so
that every county has only one NOx emission rate for a new gasoline vehicle, for example. Then,
we needed to calculate one combined electric vehicle rate, since electric vehicles consist of both



battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). The ACC II
regulation considers both BEVs and PHEVs to be electric vehicles, and both types of vehicle
have their own corresponding emission factors. The same is true for ICE vehicles, which consist
of both gasoline and diesel vehicles. This category also contains natural gas vehicles, however
they typically make up less than 1 percent of ICEV sales. Additionally, the EMFAC Emissions
Inventory website is missing data on natural gas vehicles, therefore, we decided to omit them in
this study. To calculate the proper ratios of BEVs to PHEVs, as well as gasoline to diesel
vehicles, we sourced data from the EMFAC Emissions Inventory website. This time, we
downloaded statewide data for the years 2015 to 2019, in order to avoid any skewed data from
the unique COVID-19 years. We found that the ratio for gasoline to diesel sales was roughly
constant at 9:1. The ratio of BEV to PHEV sales did change throughout the years, with the
number of PHEVs decreasing each year. Additionally, the ACC II states that although PHEVs
count as a zero emission vehicle, they can only make up 20 percent of the annual zero-emission
vehicle requirement. Therefore, we linearly interpolated between the last year of 2019 to the year
2026, when PHEVs can only account for 20 percent. This is shown in the figure below.

Figure 9. This figure shows the percentage of new vehicle sales every year that can be attributed to either BEVs or
PHEVs. We performed a linear interpolation between the years of 2019 and 2026.

Finally, we used these calculated ratios to find combined emissions rates for electric and
combined emissions rates for ICE vehicles. This was done by multiplying the emission rates for
each fuel type by the corresponding ratio. For example, to find the ICE emission rate for NOx,
we performed the following calculation:

(NOx gasoline emission rate*0.9) + (NOx diesel emission rate*0.1) = total NOx ICE emission rate

This was done for both the electric and ICE vehicles, with the ratio for electric vehicles changing
every year until 2026. For the last step of our projections, we multiplied these rates by the



corresponding number of new electric and ICE vehicles for each census block group code, which
was already previously calculated. This yielded the new emissions being added to the fleet for a
given year which was added to the reduced emission values from vehicles being taken out. In the
end, this gave us the projected PM2.5, VOC, NH3, NOx and SOx emissions for the year. Once one
year was projected, it became the starting point data for the next year, and so on. An example of
a projected dataset in R is included below for visualization.

Figure 10. This figure shows an example of a projected dataset in R and includes projected NOx emissions. From
this figure, we can see the spatial resolution utilized is the census block group. The dataset also includes the CES
percentile scores for each census block group, as well as the county it belongs to, which is how we joined the
projected emission factors data. The “red_NOX” column contains the reduced values of the original emissions data,
which symbolizes the remaining fleet after cars have been removed. The next two columns represent the emissions
for new ZEVs and new ICEVs being introduced into the fleet. Finally, the “NOX_new” column contains the annual
projected emissions for a given year. This value was calculated by adding the reduced original emissions to the
emissions for new ZEVs and ICEVs–the three columns prior. This process was repeated for each pollutant.

1.5 Modeling with the ISRM Tool

The ISRM Tool
Modeling of our baseline and scenario datasets was performed through the newly

developed InMap Source-Receptor Matrix (ISRM) Tool, created by UC Berkeley graduate
student Libby Koolik. As our team is one of the first testers of this tool, we closely consulted
with Koolik on how to use it and provided feedback for its future development. Essentially, the
ISRM Tool combines the functions of the Intervention Model for Air Pollution (InMAP), created
by Christopher Tessum, Jason Hill, and Julian Marshall, with the EPA’s Environmental Benefits
Mapping and Analysis Program (BenMAP). InMAP is a reduced complexity model that predicts



annual average changes in PM2.5 concentrations that result from small perturbations in emissions
(Tessum et al., 2017). One detail to note is that the ISRM tool is based on the ISRM developed
by Goodkind et al. (2019) and not InMAP itself. Goodkind et al. (2019) used InMAP to collect
estimates of the perturbations brought about by small changes in emissions in various locations.
Through this integration, Goodkind et al. (2019) created matrices to derive linear associations
between emissions and locations, and formed the ISRM for various pollutants. BenMAP then
associates these changes in PM2.5 concentrations with estimated changes in health endpoints,
such as changes in the number of illnesses and deaths caused by air pollution (U.S. EPA, 2022).
Utilizing the ISRM Tool simplified our methodology as it only requires users to supply an
emissions file that has a spatial component and contains values for the emissions of PM2.5, VOC,
NH3, NOx and SOx, two unique identification columns (I_CELL, J_CELL), and an optional
‘Height_M’ column indicating source release height, for the tool to perform the calculations of
both InMAP and BenMAP. The other requirements of the tool, such as the ISRM health
calculation files and a population file, are included by default after installing the tool. The ISRM
Tool performs a regridding process from the emissions data input to ISRM grid cells and
calculates changes in PM2.5 concentrations and health endpoints like excess mortality and excess
ischemic heart disease per these ISRM grids. Specifically for our purposes, we used the ISRM
Tool to determine the changes in PM2.5 concentrations and excess mortality as a result of
alterations to the baseline distribution of ZEVs among the different CES score quartiles.

Accessing the ISRM Tool Through Google Cloud
The ISRM Tool was accessed through the Google Cloud platform. Detailed information

about the ISRM Tool’s methodology and the code for running the tool were provided by Koolik
through the GitHub Readme file and the ISRM Tool on Linux & Google Cloud manual,
respectively. To set up the tool properly, we started a virtual machine in Google Cloud, which
gave us access to a Secure Shell (SSH) where most of the coding took place. The essential inputs
required for the ISRM Tool were the emissions shapefile, ISRM files, and population file. The
tool has other capabilities, but only these three inputs and the ‘Run Health’ setting were applied
for our purposes. Buckets were created in Google Cloud to store the emissions file inputs, data
files necessary for running the ISRM Tool, and population files, as well as the output files from
the ISRM Tool.

For the ISRM files and the population file, we utilized the tool’s native datasets that
included the California ISRM grid and 2010 Census population data. The emissions shapefiles
were created from the baseline and scenario datasets and included data on emissions for PM2.5,
VOC, NH3, NOx and SOx. As aforementioned, the emissions shapefile had additional spatial
requirements and needed specific column names and formatting in order for the tool to read it
correctly. Thus, we made sure to correctly match the required column names of the emissions
data files with the ISRM Tool’s desired format. In order to run any emissions data, the ISRM
Tool requires its input files to be shapefiles or feather files. As our baseline and scenario
emissions data were originally csv files, we had to give them a spatial component by joining the

https://github.com/lkoolik/isrm_health_calculations/blob/main/README.md
https://docs.google.com/document/d/1aurYIaGMi6BCvQaK6cEyrb5amSAX8TXTYiB2ko2N8FU/edit#


data with 2020 block group data using the QGIS mapping software. Through this process, we
were able to convert our data into shapefiles. After these steps, the emissions shapefiles were
ready to be exported and inputted into the ISRM Tool.

We proceeded to run each set of emissions data (EMFAC 2019, baseline, and projected
scenarios) through the ISRM Tool following the aforementioned manual, and our control files
have been included in the appendix. We selected that the tool provides PM2.5 concentrations per
ISRM grid, which assigns a variable grid ranging from 1 to 48 km based on population density,
since this would provide a higher resolution in more populated regions than other options like
per county or per air basin. The output files from each ISRM Tool run consisted of a line graph
depicting PM2.5 exposure percentiles by racial and ethnic groups; a map of PM2.5 concentrations
across California; maps regarding total all cause excess mortality, total ischemic heart disease
excess mortality, and total lung cancer excess mortality; as well as shapefiles for all map outputs.

Accessing the ISRM Tool Locally
Alternatively, we were also able to access the ISRM Tool locally on a Mac operating

system. Detailed instructions for this method were similarly provided by Koolik through the
Running the ISRM Tool on Mac manual. The methodology listed was comparable to that of the
Linux & Google Cloud manual, with a few modifications. To run the tool, we first ensured the
latest version of Python was installed to the system. Due to the system’s limited processing
capabilities, we connected to a Linux server via Mac’s Terminal. Once we connected to the
server via a SSH, we created a virtual environment that stored the libraries necessary for us to
run the code pipeline. From there, we cloned the ISRM Github repository through the Mac
Terminal, downloaded the data files necessary for running the tool, and were able to run the
ISRM Tool in a similar fashion to the Google Cloud Platform. Further details of this process can
be found in our Running the ISRM Tool Locally on a Linux Server (Mac OS) document.

Processing the ISRM Tool Outputs
After each run of the ISRM Tool, it provided six different outputs for each of our

scenarios: a copy of the control file, a copy of all logging statements printed on the terminal, a
map which depicted changes in the dispersal of PM2.5 exposure concentrations, maps of their
health incidences (e.g., lung cancer), a line graph that depicted the distribution of PM2.5 exposure
by population group percentile, and a sub-directory of shapefiles (“shapes”) that detailed
exposure concentrations and/or health incidences.

Of the outputs that were produced from the tool, the map of California illustrated the
dispersal of changing PM2.5 exposure concentrations with the use of a continuous color scale.
However, the low resolution of these values, whose distribution was auto-generated by the tool,
made it difficult to distinguish and analyze areas whose PM2.5 concentrations were greater than
the lowest recorded values. To best define and provide greater insight to our data, we imported
the corresponding shapefiles that were exported with each map output from the ISRM Tool into

https://lkoolik.github.io/isrm_tool/
https://docs.google.com/document/d/1PRSb9uiU2TTvQ_QLCnGXj0UG5vDiJr_l-vxukKfBP0Q/edit?usp=sharing


QGIS. Within each shapefile’s layer properties, we used graduated color symbols to reflect each
area’s “PM25_UG_M3” values. As QGIS uses graduated symbology to divide data into classes,
we selected a color ramp that best accounted for and illustrated each area’s values (e.g., the
ramp’s darkest color represented larger areas with the lowest PM2.5 concentrations, and the
lightest color represented smaller areas with higher recorded PM2.5 concentrations). To best
display the wide range of values we were working with, as well as analyze each scenario’s
results from a comparative distance, the same logarithmic scale was applied to each scenario’s
revised maps. The values used for this scale were derived from our baseline data, as it accounts
for California’s most current (i.e., highest) PM2.5 concentrations and corresponding health
impacts, and is the standard by which our projected scenarios have been modeled and compared
to. Further details of this process can be found in our Processing the ISRM Tool's PM2.5
Exposure Concentration Maps in QGIS document.

Then, we selected each run’s respective shapefiles for PM2.5 exposure concentrations, and
total excess mortality due to PM2.5 exposure. We reapportioned PM2.5 concentrations and
mortality from the ISRM grids to the block group level using RStudio. With regards to PM2.5

concentrations, if a block group was completely within an ISRM grid, we assigned the block
group to have the same PM2.5 concentration as the ISRM grid. If the block group overlapped with
multiple ISRM grids, we calculated a weighted average for the PM2.5 concentration in the block
group based on land area (for each overlap, we multiplied PM2.5 concentration of ISRM grid by
proportion of land area in block group intersecting with the ISRM grid, and found total sum of
all contributing portions to a block group). As for mortality, we distributed mortality based on
land area to ensure proper mass balance for all calculations. If the block group was completely
within an ISRM grid, we multiplied the total mortality in the ISRM grid by the proportion of
land area in the ISRM grid intersecting with the block group. If the block group overlapped with
multiple ISRM grids, we summed mortality values from the overlaps based on land area
intersections (for each overlap, multiplied total mortality in ISRM grid by proportion of land area
in block group intersecting with ISRM grid, and found total sum of all contributing portions to a
block group). The purpose of the reapportionment was to allocate changes in PM2.5

concentrations and mortality per ISRM grid to the block group level to allow for further analysis
on the changes specifically experienced in block groups. This way, we could more easily
highlight changes in PM2.5 and excess mortality in disadvantaged communities and consider the
community characteristics related to race/ethnicity and other socioeconomic variables, like
income.

Additionally, we generated summary maps of each run’s PM2.5 exposure concentrations
with most disadvantaged communities overlaid. This utilized identified communities, as defined
by CES scores, that were in the highest quartile and overlaid the borders of these communities on
top of the aforementioned map outputs specific to Greater Los Angeles and the San Francisco
Bay Area. This allowed us to provide more context in our analysis to these regions with higher
PM2.5 concentrations.

https://docs.google.com/document/d/1E-etjL3s6KJXYaD1qbN-Bf5hN2Qvw7h5zo4DNzk5HOM/edit?usp=sharing
https://docs.google.com/document/d/1E-etjL3s6KJXYaD1qbN-Bf5hN2Qvw7h5zo4DNzk5HOM/edit?usp=sharing


1.6 Assessing Health Disparities on Disadvantaged Communities Using Bar Graphs

Bar Graph Outline
The bar graphs we created looked at four agents that may portray any health disparities.

Those are PM2.5 exposure, average premature mortality, PM2.5 emissions, and NOx emissions.
PM2.5 exposure and average premature mortality were used to determine the health effects from
mobile sources. Additionally, we included NOx emissions and PM2.5 emission to analyze its
importance as an emission from mobile sources.

We grouped each agent to either CalEnviroScreen scores, non-white population, or
median household income. To do this we joined by the census tract variable. Some datasets were
in a geoid form, because of this we had to manually mutate the geoids into census tracts.

Creating Bar Graphs
We created bar graphs to represent the average PM2.5 exposure levels, average premature

mortality, PM2.5 emissions, and NOx emissions across the baseline 2020 data, business as usual
scenario, equal spread of ZEVs scenario, half to DACs scenarios, three-fourths to DACs
scenario. We did this to analyze the differences in distribution across each scenario. We used
three different parameters to sort the levels of PM2.5 exposures to a quartile group. Those
parameters were decided on what we considered to be disadvantaged in our report; including
CalEnviroScreen scores, non-white population, and median household income. Each parameter
had its scores on a percentile format, this was done through RStudio to keep everything under the
same metric system. The percentile scores had been coupled to a census tract in California.

Based on the emissions provided by the EMFAC CARB data, emission levels had been
obtained for each prospective scenario. The predicted emissions levels were then reapportioned
to PM2.5 exposure levels and premature mortality deaths.

We then joined our disadvantaged group (CES, non-white population, median household
income) to PM2.5 exposure, mortality, PM2.5 emissions, or NOx emissions separately by census
tract. Our quartiles were formed by sorting each disadvantaged parameter from low to high on
Google Sheets. Our four quartiles ranged from <25, 25-<50, 50-<75, 76-100. The agent values
within each quartile range were averaged for each scenario. The values from the 76-100
percentile is what we deemed as disadvantaged.

In addition to the statewide analysis described above, we further analyzed highly
populated areas to determine if similar disparity trends follow. Those areas include Los Angeles
and San Francisco counties. In total we created 32 bar graphs for California, Los Angeles
County, San Francisco County and the respective PM2.5 exposure, mortality, PM2.5 emissions, and
NOx emissions. This was done for CalEnviroScreen scores, non-white population, and the
median household income.



Results and Discussion

2.1 Projected Trends in Pollutants from 2020 Through 2035

Using the projected fleet and emissions data we created through forming our scenarios,
we were able to highlight the expected trends in NOx, VOC, PM2.5, SOx, and NH3 emissions
from 2020 - 2035. We then compared those trends to see the differences in reductions between
disadvantaged and advantaged communities in each scenario.

Figure 11a. NOx Emissions per year from 2020 -
2035, for the most advantaged communities in each
projected scenario.

Figure 11b. NOx Emissions per year from 2020 -
2035, for the most disadvantaged communities in
each projected scenario.

Figure 11 shows the differences between trends in NOx emissions for advantaged vs
disadvantaged communities over time. The overall decrease in this pollutant over time is
projected to be very similar in both community types shown. However, figure 11b shows larger
decreases of NOx emissions in disadvantaged communities for scenarios that heavily favor ZEV
sales in DACs with advantaged communities seeing the opposite for these scenarios.



Figure 12a. VOC Emissions per year from 2020 -
2035, for the most advantaged communities in each
projected scenario.

Figure 12b. VOC Emissions per year from 2020 -
2035, for the most disadvantaged communities in
each projected scenario.

Figure 12 shows the differences between trends in VOC emissions for advantaged vs
disadvantaged communities over time. The trends in this figure are nearly identical to those
shown in figure 11, with a steady decrease in emissions overtime.

Figure 13a. PM2.5 Emissions per year from 2020 -
2035, for the most advantaged communities in each
projected scenario.

Figure 13b. PM2.5 Emissions per year from 2020 -
2035, for the most disadvantaged communities in
each projected scenario.

Figure 13 shows the differences between trends in PM2.5 emissions for advantaged vs
disadvantaged communities over time. 13b shows a slightly larger overall decrease in PM2.5
emissions for disadvantaged communities when compared to advantaged communities through
all scenarios.



Figure 14a. SOx Emissions per year from 2020 -
2035, for the most advantaged communities in each
projected scenario.

Figure 14b. SOx Emissions per year from 2020 -
2035, for the most disadvantaged communities in
each projected scenario.

Figure 14 shows the differences between trends in SOx emissions for advantaged vs
disadvantaged communities over time. 14b shows a slightly larger overall decrease in PM2.5
emissions for disadvantaged communities when compared to advantaged communities through
all scenarios.

Figure 15a. NH3 Emissions per year from 2020 -
2035, for the most advantaged communities in each
projected scenario.

Figure 15b. NH3 Emissions per year from 2020 -
2035, for the most disadvantaged communities in
each projected scenario.

Figure 15 shows the differences between trends in NH3 emissions for advantaged vs
disadvantaged communities over time. The trends in this figure are nearly identical to those
shown in figure 11, with an overall decrease in emissions overtime. Scenarios that favor ZEV
sales in DACs saw larger decreases on NH3 in those areas but saw increases in advantaged
communities.



2.2 Tracking Annual Pollutant Emissions

Figure 16. Relationship between the CalEnviroScreen scores and the average PM2.5 emissions in California.

In Figure 16, we are looking at California’s average PM2.5 emissions and establishing our
disadvantaged groups by CalEnviroScreen scores. In the baseline scenario, there is a .4%
decrease in the upper quartile from the lower quartile. In the business as usual scenario, there is a
1% increase in the upper quartile from the lower quartile. In the equal spread scenario, there is a
6% increase in the upper quartile from the lower quartile. In the half to DACs scenario, there is a
44% decrease in the upper quartile from the lower quartile. In the three-fourths to DACs
scenario, there is a 22% decrease in the upper quartile from the lower quartile. In this graph, it
can be seen that the scenarios that introduce a greater proportion of ZEVs into the most
disadvantaged communities show results that reduce the disparity between those communities
and the least disadvantaged; with the scenario where half of ZEV sales go to disadvantaged
communities being the most effective scenario in doing this.



Figure 17. Relationship between the CalEnviroScreen Scores and the average NOx emissions in California.

In Figure 17, we are looking at the average NOx emissions and establishing our
disadvantaged groups by CalEnviroScreen scores. In the baseline scenario, there is a 23%
increase in the upper quartile from the lower quartile. In the business as usual scenario, there is a
44% increase in the upper quartile from the lower quartile. In the equal spread scenario, there is a
10% increase in the upper quartile from the lower quartile. In the half to DACs scenario, there is
a 2% decrease in the upper quartile from the lower quartile. In the three-fourths to DACs
scenario, there is a 16% decrease in the upper quartile from the lower quartile. At first glance, it
can be seen that the baseline has an exponentially higher level of emissions than the other
scenarios. Again, we see that the two scenarios that introduce a greater proportion of ZEVs into
the most disadvantaged communities show results that reduce exposure disparity. The fact that
these scenarios see decreases in the differences between the most and least disadvantaged
communities shows just how much of an impact the introduction of ZEVs can make. The
three-fourths of ZEVs to disadvantaged communities looks to be the most efficient at reducing
exposure disparity.



2.3 UCLA Statewide Estimates Validated Against CARB EMFAC 2019 Data

According to CARB’s EMFAC 2019 output (Figure 18A), the highest PM2.5

concentrations occur at more densely populated areas, like the San Francisco Bay Area and the
Greater Los Angeles Area, which have respective concentrations of around 1.0 μg/m3 and from
2.0 to upwards of 2.5 μg/m3.

Figure 18. EMFAC 2019 (18A) and Baseline 2020 (18B) PM2.5 concentrations (μg/m3) from light-duty vehicles.

These same observations remained consistent for our baseline scenario (Figure 18B)
based on fleet data combined with emission factors. This indicates that our methods were
validated per the EMFAC 2019 run since the same locales were identified as experiencing the
highest PM2.5 concentrations.



2.4 Evaluating PM2.5 Exposure from Light-Duty Vehicles by Population Group Percentile

Figure 19. EMFAC 2019 and Baseline 2020 PM2.5 exposure concentrations (μg/m3) from light-duty vehicles with
racial/ethnic breakdown. At the 50th and 75th percentile of exposure, racial/ethnic group disparities can be found for
PM2.5 exposure with relatively higher exposures for Hispanic/Latino, Black, and Asian populations compared to
white and Indigenous populations.

The line graphs shown in Figures 19-21 display the PM2.5 exposure experienced by
percentiles of racial/ethnic groups, as produced from the ISRM Tool. An nth percentile indicates
that people experience a PM2.5 exposure greater than n% of their racial/ethnic group. For the
baseline scenario, we observed that at the 25th percentile, all racial/ethnic groups experienced
similar concentrations of PM2.5 between 0.1 and 0.4 μg/m3 (Figure 19B).At the 50th percentile,
there was growing inequity among the racial/ethnic groups as PM2.5 concentrations varied
between 0.25 and 0.6 μg/m3. This inequity was most prevalent at the 75th percentile where the
exposure concentrations of PM2.5 ranged from 0.5 to 1.25 μg/m3. Throughout the various
scenarios, the distribution of racial/ethnic groups is fairly consistent: Black and Hispanic/Latino
populations experience the greatest amount of PM2.5, although this is untrue at the lowest
percentiles where Asians experience the greatest amount of PM2.5. Asians, Pacific Islanders, and
other racial/ethnic groups experience intermediate exposures and white and Indigenous
populations experience the lowest amount of exposure.



Figure 20. Business as Usual and Equal Spread PM2.5 exposure concentrations (μg/m3) from light-duty vehicles with
racial/ethnic breakdown. At the 50th and 75th percentile of exposure, racial/ethnic group disparities can be found for
PM2.5 exposure with relatively higher exposures for Hispanic/Latino, Black, and Asian populations compared to
white and Indigenous populations.

In the business as usual scenario, the 25th percentile displayed a much smaller range
compared to the baseline, with PM2.5 exposure ranging between 0.1 to 0.25 μg/m3 (Figure 20).
The 50th percentile showed an even more drastic decrease than the baseline with PM2.5 exposure
ranging between 0.2 to 0.45 μg/m3. Once again, the 75th percentile displayed the most disparities
between racial/ethnic groups, but PM2.5 decreased compared to the baseline to a range of 0.3 to
0.85 μg/m3. Interestingly, the line graph revealed that at the 75th percentile, PM2.5 exposure
disparities remained consistent between Black and Hispanic/Latino populations and white
populations. This could imply that current ZEV distribution rates will not have a significant
impact in reducing PM2.5 exposure to vulnerable populations by 2035. Another noticeable
difference with the baseline is that the Asian population experiences less PM2.5 exposure
compared to the Black and Hispanic/Latino populations in general between the 60th and 80th
percentiles.

The equal spread scenario was fairly similar to the business as usual scenario (Figure 20).
The 25th and 50th percentiles were almost identical to the business as usual scenario at 0.1 to
0.25 μg/m3 and 0.2 to 0.45 μg/m3, respectively, but another decrease was found at the 75th
percentile. The 75th percentile now ranged from 0.3 to 0.8 μg/m3, but disparities have noticeably
reduced from the business as usual scenario. Less of a gap can be found between the Black,
Hispanic/Latino, and Asian populations, as well as all three populations compared to the white
population. This finding signifies that with about 25% of ZEVs getting distributed to
disadvantaged communities, minority populations, specifically the Black, Hispanic/Latino, and
Asian populations, experience reductions in PM2.5 exposure by 2035 without being high outliers
compared to other populations.



Figure 21. Half to DACs and Three-Fourths to DACs PM2.5 exposure concentrations (μg/m3) from light-duty
vehicles in 2035 with racial/ethnic breakdown. At the 50th and 75th percentile of exposure, racial/ethnic group
disparities can be found for PM2.5 exposure with relatively higher exposures for Black, Hispanic/Latino, and Asian
populations compared to white and Indigenous populations.

As greater proportions of new ZEV sales get distributed to disadvantaged communities,
the line graphs showed less disparities in PM2.5 exposure across all percentiles by 2035. In the
half to DACs scenario, the 25th percentile was now at 0.05 to 0.25 μg/m3, the 50th percentile
was at 0.2 to 0.4 μg/m3, and the 75th percentile was at 0.3 to 0.75 μg/m3 (Figure 21). Most of the
lines were in close proximity to each other, and it seemed that the Black and Hispanic/Latino
populations showed no difference than the PM2.5 experienced by the Asian population unlike the
previous two scenarios.

The three-fourths to DACs scenario showed the least disparities among racial/ethnic
groups. The 25th percentile was at 0.05 to 0.25 μg/m3, the 50th percentile was at 0.2 to 0.4
μg/m3, and the 75th percentile was at 0.3 to 0.7 μg/m3. While the values were not very different
from the half to DACs scenario, the line graph displayed even fewer disparities as now all racial
ethnic groups were within 0.4 μg/m3 of each other at the 75th percentile. In the business as usual
scenario, the difference in disparities between the Black and Hispanic/Latino populations and the
white population was about 0.4 μg/m3, but by the three-fourths to DACs scenario, this difference
was reduced in half to about 0.2 μg/m3. Overall, the series of line graphs demonstrate that more
ZEVs in disadvantaged communities reduces the disparities of PM2.5 exposure experienced by
vulnerable populations in California by 2035.



2.5 Evaluating the Greater Los Angeles Area Through Various Projections

Figure 22. Greater Los Angeles Area PM2.5 concentrations in 2020 with applied corrective factors to adjust for the
COVID-19 pandemic. The disadvantaged communities outlined in red and labeled are as follows: (1) San Fernando
Valley, (2) Glendale, (3) San Gabriel Valley, (4) Los Angeles, (5) Long Beach, (6) Anaheim, (7) Santa Ana, (8) San
Bernardino, (9) southwestern San Bernardino, (10) Riverside, (11) Corona, (12) Perris, (13) Moreno Valley.

The Greater Los Angeles Area is shown to experience a wide range of PM2.5

concentrations across its landscape (Figure 22). This is evidenced by the change in
concentrations as one moves west from Riverside and San Bernardino, which experience PM2.5

concentrations from as low as 0.17-0.7 μg/m3, towards the San Fernando Valley, Los Angeles,
and Santa Ana, which mainly experience concentrations between 1.2-2.8 μg/m3. This noticeable
increase in PM2.5 concentrations can be attributed to these greater urban regions experiencing
heavier, condensed traffic. However, these PM2.5 hotspots are largely situated within
disadvantaged communities.



Figure 23. Greater Los Angeles Area projected PM2.5 concentrations in 2035 based on the following ZEV adoption
rates: the current ZEV adoption rate (“business as usual”), equal adoption rates across all communities (“equal
spread”), half of ZEV adoption occurring in disadvantaged communities (“half to DACs”), and three-fourths of ZEV
adoption occurring in disadvantaged communities (“three-fourths to DACs”).

In the business as usual map (Figure 23A), we can see a drastic decrease in the projected
PM2.5 concentrations for 2035 compared to the baseline. This change is especially evident in the
hotspot regions across Corona, Riverside, southwestern San Bernardino, San Gabriel Valley,
Glendale, San Fernando Valley, Los Angeles, Long Beach, Anaheim, and Santa Ana: areas that
experienced PM2.5 concentrations that ranged from 1.2-2.8 μg/m3 (Figure 22), now vary more
between 0.7-1.5 μg/m3. This is with the exception of a few areas that experience 2.8 μg/m3

concentrations, notably Glendale, Los Angeles, Santa Ana, and southwestern San Bernardino. It
is also noted that in the disadvantaged communities located in San Bernardino, Moreno Valley,
and Perris, the range of PM2.5 concentrations they experienced went down from 0.17-0.7 μg/m3

to range between 0.1-0.5 μg/m3.
In the equal spread map (Figure 23B), we continue to see decreases in PM2.5

concentrations from the business as usual scenario, although not as drastic. Of the
aforementioned hotspots where 2.8 μg/m3 concentrations were still prominent (i.e. Glendale, Los
Angeles, Santa Ana, and southwestern San Bernardino) they have notably gotten smaller. The
disadvantaged communities situated in and nearby these hotspots still experience PM2.5



concentrations that range up to 1.5 μg/m3, but more within the range of 0.7-1.2 μg/m3. However,
we have interestingly started to see an increase in the PM2.5 concentrations of advantaged
communities, specifically located in Lake Forest and Mission Viejo, which are just southeast of
Santa Ana. What ranged between 0.7-1.3 μg/m3 in the “business as usual” scenario, has increased
to range between 0.5-1.5 μg/m3 here.

In the half to disadvantaged communities map (Figure 23C), we see a decrease in PM2.5

concentrations in the hotspots located in Glendale, Los Angeles, and southwestern San
Bernardino from the equal spread scenario, with more block groups’ PM2.5 concentrations
ranging between 0.5-1.2 μg/m3. In the case of Lake Forest and Mission Viejo, the lower end of
their PM2.5 concentrations slightly increased from 0.5 μg/m3 to 0.6 μg/m3, and increased spatially.

In the three-fourths to disadvantaged communities map (Figure 23D), we find consistent
findings with those in the half to DACs map. In the Greater LA Area and upper Riverside
County, the 0.5-1.2 μg/m3 range still holds strong, with more block groups’ concentrations
settling around 0.5-1.0 μg/m3. In the DACs located in San Bernardino, Perris, and Moreno
Valley, PM2.5 concentrations decreased from 0.1-0.5 μg/m3 to about 0.06-0.3 μg/m3. As for
Orange County, the upper end of the range increased slightly from 1.5 μg/m3 to 1.6 μg/m3, and
now covers more of the region.

From these findings, we're able to see that as equity of ZEV distribution increases in each
subsequent map, decreases in PM2.5 concentrations were initially greater, but became more
gradual overtime. This was especially the case in disadvantaged communities situated in hotspots
in Corona, Riverside, southwestern San Bernardino, San Gabriel Valley, Glendale, San Fernando
Valley, Los Angeles, Long Beach, Anaheim, and Santa Ana. This initially had been the case for
advantaged communities in Lake Forest and Mission Viejo, which experienced the same drastic
decrease in PM2.5 concentrations in the business as usual scenario. However, they alternatively
saw an increase and spread in PM2.5 concentrations in subsequent scenarios. Overall, considering
the wide range of PM2.5 concentrations experienced in the Greater Los Angeles Area, especially
by disadvantaged communities located in PM2.5hotspots, the gradual introduction of more ZEVs
could greatly improve the air quality of this region. However, areas where ZEVs may not be
introduced at similar rates (e.g. like Lake Forest and Mission Viejo in this study) may see
increases in PM2.5 concentrations and signs of worsened air quality.



2.6 Evaluating the San Francisco Bay Area Through Various Projections

Figure 24. San Francisco Bay Area PM2.5 concentrations in 2020 with applied corrective factors to adjust for the
COVID-19 pandemic. The disadvantaged communities labeled are as follows: (1) San Jose, (2) Redwood City, (3)
Greater Oakland, (4) South San Francisco, (5) San Francisco, (6) Alameda, (7) Downtown Oakland, (8) Richmond,
(9) Pittsburg and Greater Stockton, (10) Vallejo.

In the baseline 2020 map output (Figure 24), the expected trend of greater urban regions
experiencing more PM2.5 concentrations was exemplified through hotspots of PM2.5 clustered in
San Francisco, the East Bay region, San Jose, and inland regions near Stockton. These
concentrations are around 1.2 μg/m3. The disadvantaged communities identified on this map
experience variable PM2.5 concentrations, ranging from 0.1 μg/m3 to as high as 1.7 μg/m3, which
suggests that the San Francisco Bay Area may not be the best region to identify improvements in
air quality, as compared to the Greater Los Angeles region, which will be discussed later.



Nevertheless, the majority of disadvantaged communities are associated with the higher end of
PM2.5 concentrations between 0.5 to 1.2 μg/m3. This observation confirms that in recent years,
disadvantaged communities have been residing in regions with relatively greater PM2.5

concentrations compared to wealthier communities.

Figure 25. San Francisco Bay Area projected PM2.5 concentrations in 2035 based on the following ZEV adoption
rates: the current ZEV adoption rate (“business as usual”), equal adoption rates across all communities (“equal
spread”), half of ZEV adoption occurring in disadvantaged communities (“half to DACs”), and three-fourths of ZEV
adoption occurring in disadvantaged communities (“three-fourths to DACs”).



In the business as usual map (Figure 25A), there is a noticeable projected decrease in
PM2.5 concentrations in 2035 from the baseline 2020 map, which is to be expected as ZEV sales
increase. Once again, PM2.5 concentrations are varied throughout the disadvantaged communities
with the same hotspots in San Francisco, the East Bay region, and San Jose, although this time at
lower concentrations of around 0.5 μg/m3. The inland regions west of Stockton experience a
notable decrease to the 0.3 μg/m3 range. In the equal spread map (Figure 25B), we see noticeable
decreases in PM2.5 compared to the baseline 2020 map. Hotspots, with concentrations of 0.5-0.7
μg/m3 arise in San Francisco, in the South Bay region, in the East Bay region, and in San Jose
and once again, disadvantaged communities experience a wide range of PM2.5 concentrations
from as low as 0.1 μg/m3 to as high as 0.7 μg/m3. Interestingly, for this and subsequent scenarios,
more inland regions display slight increases of PM2.5 concentration to the 0.5-0.7 μg/m3 level. In
the half to disadvantaged communities map (Figure 25C), we see similar findings to the equal
spread scenario, but there are increases in PM2.5 whereby more block groups in San Francisco
and in the East Bay region experience 0.7 μg/m3 of PM2.5. This increase in PM2.5 concentration is
comparable in the three-fourths to disadvantaged communities map (Figure 25D). Greater
amounts of block groups in San Francisco are experiencing 0.7 μg/m3 of PM2.5; however, East
Bay has lower PM2.5 concentrations at 0.5 μg/m3.

Within disadvantaged communities, all four scenarios lead to observable decreases in
PM2.5 concentrations compared to the baseline scenario, which range on average from 0.5-1.2
μg/m3 to about 0.25-0.7 μg/m3. However, some findings are surprising in that as the equity of
ZEV distribution increases from the business as usual scenario to the three-fourths to
disadvantaged communities scenario, PM2.5 concentrations actually increase in areas like East
Bay and San Francisco. One possible explanation for the PM2.5 exposure increases observed in
advantaged communities could be that with a greater proportion of ZEVs distributed to
disadvantaged communities, these other regions are receiving fewer ZEVs. With fewer ZEVs in
each subsequent scenario attributed to regions with more advantaged communities, PM2.5

exposure would be expected to increase relative to business as usual scenario for each
subsequent scenario in these locations.



2.7 Evaluating the Average PM2.5 Exposure and Health Effects Across California

Figure 26. Relationship between the CalEnviroScreen scores and the average PM 2.5 exposure in
California

In Figure 26, we are looking at the average PM2.5 exposure in California and establishing
our disadvantaged groups by CalEnviroScreen scores. One noticeable difference is that the
baseline 2020 concentration displays a lower PM2.5 exposure level than the respective scenarios.
This is as expected, as gas-fueled vehicles are slowly being replaced with ZEVs, PM2.5 emissions
are decreasing concurrently with PM2.5 exposure levels. Overall, the implementation of ZEVs
does indicate a reduction in the concentration of PM2.5. We then tested to see if the disparity
between the upper quartile and lower quartile decreases. Again, the upper quartile refers to the
most disadvantaged groups, and the lower quartile refers to the least disadvantaged group.

After testing the disparity we calculated a 100% increase in the upper quartile from the
lower quartile in the baseline 2020 scenario. The business as usual scenario had a 149% increase
in the upper quartile from the lower quartile. This is indicative in showing that with today’s
current rates, the health disparity will increase regardless of the overall reduction of PM2.5

concentration. The equal spread of ZEVs scenario has a 94% increase in the upper quartile from
the lower quartile. The half to DACs scenario has a 67% increase in the upper quartile from the
lower quartile. The three-fourths to DACs scenario has a 54% increase in the upper quartile from
the lower quartile. We see a reduction in disparities as the distribution of ZEVs caters towards
disadvantaged communities. Even with the idealized scenario of the three-fourth distribution of
ZEVs to disadvantaged communities, there is still a disparity over 50%. Although the disparity is
expected to substantially reduce from the current rate, equity is still not reached. Other measures
need to be taken in order to ensure the safety of disadvantaged communities.



Figure 27. Relationship between the CalEnviroScreen scores and the calculated mortality in California.

Figure 27 is looking at the average mortality to its respective CalEnviroScreen score. The
mortality is what we used to identify the health effects imposed from mobile sources. The trends
of Figure 27 coincides with Figure 26. We can see there is an overall reduction of mortality in the
2035 scenarios. The baseline displays an 84% increase in upper quartile from the lower quartile.
Additionally we see an even higher disparity in scenario 1, with a 118% increase in the upper
quartile from the lower quartile. Following the business as usual scenario reveals a 65% increase
in the upper quartile from the lower quartile. In the half to DACs scenario, we see a 49%
increase in the upper quartile from the lower quartile. Lastly in the three-fourths to DACs
scenarios, we see a 37% increase in the upper quartile from the lower quartile.

Mortality and the PM2.5 exposure both show that there is an increase in disparity for the
business as usual scenario, and a declining disparity from scenarios two to four. Mortality does
show a slight lower disparity than the PM2.5 exposure. Although the mortality is lower, it is worth
mentioning that we are only checking for the most extreme health outcome, death.
PM2.5 concentration can also cause short term effects such as damage to the respiratory tract and
lung irritation. This bar graph does not consider all the health effects from the PM2.5 exposure. If
we did, then we would expect to see a slightly high disparity.



Figure 28. Relationship between the non-white population and the average PM 2.5 exposure in California

Alternatively, we will now be looking at the non-white population (Figure 28) to define
our disadvantaged groups. Once again we see the same sharp increase in the back to business
disparity, and a declining disparity in the next three scenarios.

In the baseline scenario, there is a 106% increase in the upper quartile from the lower
quartile. In the business as usual scenario, there is a 147% increase in the upper quartile from the
lower quartile. In the equal spread scenario, there is a 97% increase in the upper quartile from the
lower quartile. In the half to DACs scenario, there is an 87% increase in the upper quartile from
the lower quartile. In the three-fourths to DACs scenario, there is a 61% increase in the upper
quartile from the lower quartile.

One striking observation in the non-white population graph is that the disparity difference
between the half to DACs scenario and the three-fourths to DACs scenario drops by 25%.
Whereas in the CalEnviroScreen graph (Figure 26), scenarios 3 and 4 have a disparity difference
of 12%. The larger drop in the non-white population graph indicates that the highest quartile
experiences the largest disparity and unequal consequences. This finding indicates that race is a
critical framework to be considered and there seems to be a clear correlation between the
non-white population and the PM2.5 exposure levels.



Figure 29. Relationship between the median household income and the average PM 2.5 exposure in California.

The last parameter we will be diving into is the median household income. Figure 29
showcases the trends of income and its respective PM2.5 exposure. Once again we see an increase
in disparity in the back to business scenario and a declining disparity in the following scenarios.

In the baseline scenario, there is a 10% increase in the upper quartile from the lower
quartile. In the business as usual scenario, there is a 18% increase in the upper quartile from the
lower quartile. In the equal spread scenario, there is a 2% decrease in the upper quartile from the
lower quartile. In the half to DACs scenario, there is a 6% increase in the upper quartile from the
lower quartile. In the three-fourths to DACs scenario, there is an 18% increase in the upper
quartile from the lower quartile.

The disparity in the income analysis is drastically lower than the disparity shown in both
the CalEnviroScreen score graph and the median household income graph. Comparatively the
income disparity does not exceed a 20% difference. Moreover, we can now see an effective
decreased risk in disadvantaged communities from the equal spread scenario to the three-fourths
to DACs scenario. Those in the least disadvantaged quartile are now facing higher PM2.5

exposure than the most disadvantaged quartile. In this prospective analysis, the equal spread
scenario displays the most equity with only a 2% difference between the upper and lower
quartile. Income may not be the best representation for the disadvantaged, as multiple other
components are not considered. Because of this, we assume that the decreased disparity is not
indicative of equity.



Figure 30. Relationship between CalEnviroScreen scores and the Average PM 2.5 Exposure in Los Angeles and San
Francisco.

We decided to focus on two California regions, to see how our scenarios would impact
specific areas. Figure 30 displays our PM2.5 exposure in relation to CalEnviroScreen scores of
Los Angeles County and San Francisco County respectively.

For Los Angeles County, the baseline scenario shows a 59% increase in the upper
quartile from the lower quartile. The business as usual scenario shows a 28% increase in the
upper quartile from the lower quartile. The equal spread scenario shows a 15% increase in the
upper quartile from the lower quartile. The half to DACs scenario shows a 6% decrease in the
upper quartile from the lower quartile. The three-fourths to DACs scenario, shows a 2% decrease
in the upper quartile from the lower quartile. Our last two scenarios boasting decreases between
the upper and lower quartiles is significant as it illustrates the potential ZEV’s have in reducing
PM2.5 exposure.



For San Francisco County, the baseline scenario shows a 67% increase in the upper
quartile from the lower quartile. The business as usual scenario shows a 64% increase in the
upper quartile from the lower quartile. The equal spread scenario shows a 31% increase in the
upper quartile from the lower quartile. The half to DACs scenario shows a 19% increase in the
upper quartile from the lower quartile. The three-fourths to DACs scenario, shows 25% increase
in the upper quartile from the lower quartile. San Francisco County’s results suggest that an
approach of half ZEV sales to the most disadvantaged communities might be the most effective
in reducing the disparity between them and the least disadvantaged.

2.8 Average PM2.5 Exposure, Mortality, PM2.5 Emissions, NOx Emissions Across California

We organized our bar graphs into four figures. Each figure focuses on either PM2.5

exposure, mortality, PM2.5 emissions, and NOx emissions. Within each figure we also looked at
the results in California, Los Angeles, and San Francisco. Additionally we combined it to the
three indicators of disadvantaged groups including CES, race, and income.

Figure 31. Average PM2.5 Exposure in Varying Disadvantaged Groups
Figure 31A: California, Figure 31B: Los Angeles, Figure 31C: San Francisco



Figure 31 looks at the PM2.5 exposure levels. PM2.5 exposure levels are the highest in the
76-100 quartile when looking at the CalEnviroScreen scores and the non-white population. The
income raises uncertainty with its reliability as a disadvantaged implication as there is little trend
across each quartile. California, statewide, shows the largest disparity between the upper and
lower quartile.

Table 3. California: Disparity between the 76-100 Quartile and <25 Quartile (in reference to Figure 31A)

CalEnviroScreen
Scores

Non-White Population Median Household
Income

Baseline 100% increase 107% increase 10% increase

Back to Business 149% increase 147% increase 18% increase

Equal Spread of ZEVs 94% increase 97% increase 2% decrease

Half to DACs 67% increase 88% increase 6% decrease

Three-fourths to
DACs

54% increase 61% increase 18% decrease

Table 4. Los Angeles: Disparity between the 76-100 Quartile and <25 Quartile (in reference to Figure
31B)

CalEnviroScreen
Scores

Non-White Population Median Household
Income

Baseline 59% increase 27% increase 40% increase

Back to Business 28% increase 36% increase 53% increase

Equal Spread of ZEVs 15% increase 26% increase 39% increase

Half to DACs 6% decrease 13% increase 25% increase

Three-fourths to
DACs

2% decrease 12% increase 20% increase

Table 5. San Francisco Disparity between the 76-100 Quartile and <25 Quartile (in reference to Figure
31C)

CalEnviroScreen
Scores

Non-White Population Median Household
Income

Baseline 67% increase 50% increase 4% increase

Back to Business 65% increase 85% increase 14% increase

Equal Spread of ZEVs 31% increase 37% increase 4% decrease



Half to DACs 20% increase 29% increase 9% increase

Three-fourths to
DACs

25% increase 42% increase 6% increase

Figure 32. Average Mortality in Varying Disadvantaged Groups
Figure 32A: California, Figure 32B: Los Angeles, Figure 32C: San Francisco

Figure 32 looks at the average mortality across California, Los Angeles, and San
Francisco. The mortality graphs follow similar trends as the PM 2.5 exposure graphs. However
we see a slight decrease across all disparties.



Table 6. California: Disparity between the 76-100 Quartile and <25 Quartile (in reference to Figure 32A)

CalEnviroScreen
Scores

Non-White Population Median Household
Income

Baseline 84% increase 83% increase 33% decrease

Back to Business 118% increase 105% increase 47% decrease

Equal Spread of ZEVs 65% increase 61% increase 23% increase

Half to DACs 49% increase 58% increase 4% increase

Three-fourths to
DACs

37% increase 52% increase 9% decrease

Table 7. Los Angeles: Disparity between the 76-100 Quartile and <25 Quartile (in reference to Figure
32B)

CalEnviroScreen
Scores

Non-White Population Median Household
Income

Baseline 36% increase 15% increase 4% increase

Back to Business 6% decrease 22% increase 1% increase

Equal Spread of ZEVs 16% decrease 13% increase 9% decrease

Half to DACs 30% decrease 2% increase 18% decrease

Three-fourths to
DACs

27% decrease 0.5% increase 9% decrease

Table 8. San Francisco: Disparity between the 76-100 Quartile and <25 Quartile (in reference to Figure
32C)

CalEnviroScreen
Scores

Non-White Population Median Household
Income

Baseline 83% increase 78% increase 11% increase

Back to Business 72% increase 135% increase 18% decrease

Equal Spread of ZEVs 17% decrease 91% increase 31% increase

Half to DACs 17% decrease 91% increase 43% increase

Three-fourths to
DACs

29% increase 79% increase 5% decrease



Figure 33. Average PM 2.5 Emissions in Varying Disadvantaged Groups
Figure 33A: California, Figure 33B: Los Angeles, Figure 33C: San Francisco

Figure 33 looks at the PM2.5 exposure levels across California, Los Angeles, and San
Francisco. PM2.5 exposure levels are higher in the California and Los Angeles graphs compared
to San Francisco. Los Angeles sees the most reduction in disparities after the scenarios. After
each scenario, San Francisco, statewide, shows the most disparity between the upper and lower
quartile.

Table 9. California: Disparity between the 76-100 Quartile and <25 Quartile (in reference to Figure 33A)

CalEnviroScreen
Scores

Non-White Population Median Household
Income

Baseline .4% decrease 9% increase 19% decrease

Back to Business 1% increase 7% increase 20% decrease

Equal Spread of ZEVs 6% increase 1% increase 4% increase



Half to DACs 44% decrease 19% decrease 40% decrease

Three-fourths to
DACs

22% decrease 11% decrease 34% decrease

Table 10. Los Angeles: Disparity between the 76-100 Quartile and <25 Quartile (in reference to Figure
33B)

CalEnviroScreen
Scores

Non-White Population Median Household
Income

Baseline 17% decrease 6% decrease 23% decrease

Back to Business 6% decrease 7% increase 16% decrease

Equal Spread of ZEVs 15% decrease 3% decrease 21% decrease

Half to DACs 49% decrease 30% decrease 49% decrease

Three-fourths to
DACs

30% decrease 6% decrease 29% decrease

Table 11. San Francisco: Disparity between the 76-100 Quartile and <25 Quartile (in reference to Figure
33C)

CalEnviroScreen
Scores

Non-White Population Median Household
Income

Baseline 49% increase 52% increase 52% increase

Back to Business 46% increase 51% increase 53% increase

Equal Spread of ZEVs 15% decrease 34% increase 84% increase

Half to DACs 15% decrease 34% increase 84% increase

Three-fourths to
DACs

3% increase 11% increase 94% increase



Figure 34. Average NOx Emissions in Varying Disadvantaged Groups
Figure 34A: California, Figure 34B: Los Angeles , Figure 34C: San Francisco

Figure 34 looks at the NOx emissions across California, Los Angeles, and San Francisco.
NOx emissions levels are the highest in the baseline scenario and exponentially decrease in every
scenario. Again, after each scenario, San Francisco, statewide, shows the most disparity between
the upper and lower quartile.

Table 12. California: Disparity between the 76-100 Quartile and <25 Quartile (in reference to Figure
34A)

CalEnviroScreen
Scores

Non-White Population Median Household
Income

Baseline 23% increase 26% increase 12% increase



Back to Business 43% increase 39% increase 19% increase

Equal Spread of ZEVs 10% increase 6% increase 7% increase

Half to DACs 2% decrease 9% increase 8% decrease

Three-fourths to
DACs

12% decrease 2% decrease 17% decrease

Table 13. Los Angeles: Disparity between the 76-100 Quartile and <25 Quartile (in reference to Figure
34B)

CalEnviroScreen
Scores

Non-White Population Median Household
Income

Baseline 20% increase 44% increase 12% increase

Back to Business 40% increase 34% increase 22% increase

Equal Spread of ZEVs 10% increase 30% increase 3% increase

Half to DACs 5% decrease 13% increase 14% decrease

Three-fourths to
DACs

18% decrease 12% increase 17% decrease

Table 14. San Francisco: Disparity between the 76-100 Quartile and <25 Quartile (in reference to Figure
34C)

CalEnviroScreen
Scores

Non-White Population Median Household
Income

Baseline 77% increase 90% increase 41% increase

Back to Business 96% increase 104% increase 30% increase

Equal Spread of ZEVs 26% increase 69% increase 58% increase

Half to DACs 26% increase 69% increase 58% increase

Three-fourths to
DACs

4% increase 33% increase 86% increase



Limitations

There were several limitations that were encountered in our project that may have
impacted our results. One is that the term “disadvantaged” in our study did not include all
considerations, such as failing to account for poverty and the most targeted race groups. While
we looked at income as a way to define disadvantaged, there were very little trends found. This
may have been because we did not look at which income brackets were experiencing poverty.
Two households may have been making the same income, however the household size could
have been indicative over which household was more vulnerable. We also looked at the entire
non-white race. We extracted every race, besides the white population. This may have been an
inaccurate representation for the term disadvantaged, as research has shown that Hispanic/Latino
and Black Americans are more likely to be exposed to higher levels of PM 2.5. In addition,
income and non-white population data were taken from the American Community Survey, this
survey is conducted through mail in questionnaires, with telephone and phone visit collection
used as a follow-up to mail non-response. The most disadvantaged groups are less likely to take
the survey, often underrepresenting particular groups. Consequently, our study may have not
collected the entire population of those who are considered disadvantaged and underestimate the
PM2.5 exposure and mortality rates found in disadvantaged communities, as well as the
reductions in these two metrics with more equitable ZEV distribution to these communities. A
third limitation was that our study did not consider that disadvantaged communities are more
likely to buy used cars instead of new vehicles. Used electric vehicles would not be as effective
in reducing PM2.5 emissions compared to new electric vehicles, so this could imply that our
reductions in PM2.5 exposure concentrations may be an overestimate of the actual PM2.5

reductions by 2035.
With regards to the fleet data, our study included light duty automobiles (LDAs) and two

categories of light duty trucks (LDT1 & LDT2), but did not involve medium duty vehicles
(MDVs). Although the CARB website classifies these as medium duty vehicles, they are still
included in the light duty vehicle emissions regulations. Therefore, they are regulated by the
ACC II rule and are expected to transition to zero emission by 2035 as well. Using the EMFAC
2019 data as a reference, the total emissions for all pollutant classes was 92,454 tons/year when
MDVs were not included. When including MDVs, the new total was 118,418 tons/year for all
pollutant classes.Therefore, we believe adding MDVs to our analysis would have increased our
emissions by 20-30% and could have produced larger PM2.5 exposures and mortality rates as the
different scenarios of ZEV distribution were applied. However, we do believe the trends and
conclusions shown in this study would be consistent with a future study including MDVs.
Furthermore, an assumption made in the study was that the removal of vehicles is proportional to
the removal of emissions. This, however, may not be true, since ZEVs are responsible for fewer
emissions than ICEVs. Since vehicles were uniformly removed, a percentage of those would be
ZEVs. If a large percentage of the vehicle population becomes ZEVs in the future, the removal
of vehicles would not be proportional to the removal of emissions. Thirdly, in our methodology,
new vehicles were assigned emission factors based on the upcoming model year. For example,



when modeling the year 2030, new vehicles referred to those with a model year of 2031. These
new vehicles were assigned this emission factor when they entered the fleet, and this emission
factor stayed constant throughout its entire lifetime. This is a simplification of reality since this
assumption does not consider the age of vehicles. As vehicles age, they tend to emit more
pollution due to decreased efficiency, so emission factors, and their subsequent emissions total,
might not be as accurate when vehicles become older. Lastly, it is likely that we overestimated
the proportion of new zero emission vehicles made up by PHEVs. The ACC II rule mandates
that PHEVs can only make up 20% of the annual zero-emission vehicle requirement. However,
this percentage will likely be lower since some manufacturers, such as Tesla, only offer BEVs
and not PHEVs.

With regards to the ISRM tool, one limitation is the use of the default 2010 population
data to establish trends in PM2.5 concentrations and mortality rates across different scenarios. The
2010 population underestimates the population in 2020, which may have led to underestimates of
the mortalities due to PM2.5. Additionally, it is possible that between 2010 and 2020, more
communities were assigned the disadvantaged status. Therefore, if 2020 population data was
used in the modeling process, the maps would have been more representative of the mortalities
and the number of disadvantaged communities affected by the varying PM2.5 concentrations.
Another limitation mentioned by the developer of the ISRM tool is that it relies on relatively old
chemical transport modeling data. This fact indicates that updated knowledge about interactions
between chemical pollutants and their dispersal would not be reflected in the calculations
performed by the ISRM tool. With this mind, the ISRM tool is continuously being developed,
and updating the calculations to the latest knowledge about chemical transport can be a way to
more accurately model the changes brought about by more equitable ZEV distributions.



Conclusions and Recommendations

In our study, we found that California’s transition to zero emission vehicles will lead to
an overall decrease in concentrations of PM2.5. This decrease was observed statewide as well as
in smaller subregions such as the Los Angeles and San Francisco Bay areas. This reaffirms the
state’s prediction that the transition will yield cleaner air for Californians and subsequently
reduce pollution-induced health impacts. However, disadvantaged communities, especially those
with a high proportion of Black and Hispanic/Latino populations, are still expected to experience
a higher air pollution burden than their counterparts if current rates of ZEV adoption continue.
While the exposures will be smaller, the pre-existing disparity will only grow larger. This would
reinforce current environmental injustices instead of using the transition as an opportunity to
prioritize the communities who are the most negatively impacted. With more aggressive rates of
ZEV adoption in disadvantaged communities, the pre-existing disparity significantly lessens or
even disappears fully. However, the rates necessary for this effect are unlikely to occur naturally
due to the current high costs of ZEVs.

Therefore, in the switch to zero emission vehicles in California, we highly recommend
that policymakers focus on making ZEVs more accessible to disadvantaged communities,
especially those with a high proportion of Hispanic/Latinos or Black populations. This could be
done by improving financial incentives to help overcome higher upfront costs. Historically, many
incentives have been offered in the form of rebates or tax credits that act retrospectively, leaving
customers to front the initial cost. This is an unrealistic option for disadvantaged communities
and needs to be improved to work prospectively instead. Incentives also need to include
community outreach and engagement to ensure that community leaders and residents are aware
and understand the resources available to them.

While a full discussion of charging infrastructure is beyond the scope of this study,
accessible charging options is a crucial step in expanding ZEV ownership. This could include
building more charging stations in homes, workplaces, or public areas. Since ZEV adoption rates
in disadvantaged communities have been historically low, it is likely that they also currently have
less access to charging infrastructure. A lack of chargers would act as an additional barrier to
ZEV adoption in the future, and more charging needs to be built immediately. Future studies
could be performed to investigate the current distribution of charging stations and to identify
target areas for future implementation. Iit is also important to address the future of the power grid
in California. While ZEVs eliminate tailpipe emissions on the streets, they place an increased
load on the electric grid. In densely populated areas like Los Angeles, this could be beneficial for
air quality, since it would relocate emissions to a potentially distant power plant. While
California may use a fair amount of renewable energy, ZEVs will not be truly clean until the grid
is entirely powered by renewables. For the time being, it is important to investigate how
increased charging demand could harm communities near power plants. Further studies will also
need to be done to include medium duty vehicles and to investigate additional scenarios of ZEV
adoption. Finally, it would be helpful to research how these PM2.5 reductions could potentially
help regions in California reach attainment for National Ambient Air Quality Standards



(NAAQS) established by the EPA under the Clean Air Act. These reductions could possibly be
offset by an increased amount of dust or particulate matter from drought or wildfires as climate
change is expected to worsen. We hope our work can be built upon to help answer these
important research questions.

Overall, the transition to zero emission vehicles in California is expected to lead to an
overall decrease in PM2.5 concentrations and related health impacts. However, current ZEV
adoption rates are low in California’s disadvantaged communities that already experience a
disproportionately high amount of air pollution. This transition presents an opportunity to
remedy this environmental injustice, but it is not possible without intervention from the
government. The results presented in this study call for immediate policy changes to prioritize
the introduction of ZEVs into the communities who need it most.
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Appendix

A. ISRM Tool on Linux & Google Cloud
Link to Libby Koolik’s ISRM Tool on Linux & Google Cloud manual.

B. Running the ISRM Tool on Mac OS
Link to Libby Koolik’s Running the ISRM Tool on Mac manual.

C. Running the ISRM Tool Locally on a Linux Server (Mac OS)
Link to Running the ISRM Tool Locally on a Linux Server (Mac OS) document.

D. Processing the ISRM Tool's PM2.5 Exposure Concentration Maps in QGIS
Link to Processing the ISRM Tool's PM2.5 Exposure Concentration Maps in QGIS
document.

https://docs.google.com/document/d/1aurYIaGMi6BCvQaK6cEyrb5amSAX8TXTYiB2ko2N8FU/edit?usp=sharing
https://lkoolik.github.io/isrm_tool/
https://docs.google.com/document/d/1PRSb9uiU2TTvQ_QLCnGXj0UG5vDiJr_l-vxukKfBP0Q/edit
https://docs.google.com/document/d/1PRSb9uiU2TTvQ_QLCnGXj0UG5vDiJr_l-vxukKfBP0Q/edit

